经典神经网络——AlexNet模型论文详解及代码复现
一、背景
AlexNet是在2012年由Alex Krizhevsky等人提出的,该网络在2012年的ImageNet大赛上夺得了冠军,并且错误率比第二名高了很多。Alexnet共有8层结构,前5层为卷积层,后三层为全连接层。
论文地址:ImageNet Classification with Deep Convolutional Neural Networks
二、创新点
1、使用大型深度卷积神经网络
作者使用了一个大型深度卷积神经网络,在ImageNet数据集上取得了非常好的结果。说明大型网络对模型的效果影响比较大,这也是为什么现在大家都在做大模型的原因。
2、ReLU激活函数
该论文推广了使用整流线型单元(ReLC)激活函数,这有助于训练更深的网络,而不会出现梯度消失的问题。
3、局部响应一体化(LRN)的使用
4、数据增强
为了减少过拟合,作者采用数据增强的方法。通过对训练图像进行平移、翻转等操作来扩充训练集,从而增强了训练样本的多样性。
5、Dropout技术
为了进一步减少过拟合,作者采用了dropout技术。在训练过程中,以一定概率将隐藏层神经元的输出置为零。
可以看出,这篇文章发表在2012年,已经是很久以前,但是这篇文章用到的Relu函数,Dropout技术到目前还是广泛使用的。
三、AlexNet使用PyTorch框架实现
from torch import nnclass AlexNet(nn.Module):def __init__(self,class_num):super(AlexNet,self).__init__()self.class_num = class_num# input(N,3,224,224)self.net = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=96,kernel_size=11,stride=4,padding_mode='zeros'),nn.ReLU(inplace=True),nn.LocalResponseNorm(size=5,alpha=1e-4,beta=0.75,k=2),nn.MaxPool2d(kernel_size=3,stride=2),nn.Conv2d(in_channels=96,out_channels=256,kernel_size=5,stride=1,padding_mode='zeros'),nn.ReLU(inplace=True),nn.LocalResponseNorm(size=5,alpha=1e-4,beta=0.75,k=2),nn.MaxPool2d(kernel_size=3,stride=2),nn.Conv2d(in_channels=256, out_channels=384, kernel_size=3, stride=1, padding_mode='zeros'),nn.ReLU(inplace=True),nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, stride=1, padding_mode='zeros'),nn.ReLU(inplace=True),nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, stride=1, padding_mode='zeros'),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=1,stride=2))self.fully_connected=nn.Sequential(nn.Linear(in_features=256*6*6,out_features=4096),nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(in_features=4096,out_features=4096),nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(in_features=4096,out_features=self.class_num))self.init_bias()def init_bias(self):for layer in self.net:if isinstance(layer,nn.Conv2d):nn.init.normal_(layer.weight,mean=0,std=0.01)nn.init.constant_(layer.bias,0)nn.init.constant_(self.net[4].bias,1)nn.init.constant_(self.net[10].bias,1)nn.init.constant_(self.net[12].bias,1)nn.init.constant_(self.fully_connected[0].bias,1)nn.init.constant_(self.fully_connected[3].bias,1)def forward(self,x):x = self.net(x)x = x.view(-1,256*6*6)x = self.fully_connected(x)return x
四、AlexNet使用keras框架实现
from keras.models import Sequential
from keras.layers import Conv2D, AveragePooling2D, Flatten, Dense,Activation,MaxPool2D, BatchNormalization, Dropout
from keras.regularizers import l2
# 实例化一个空的顺序模型
model = Sequential(name="Alexnet")
# 1st layer (conv + pool + batchnorm)
model.add(Conv2D(filters= 96, kernel_size= (11,11), strides=(4,4), padding='valid', kernel_regularizer=l2(0.0005),
input_shape = (227,227,3)))
model.add(Activation('relu')) #<---- activation function can be added on its own layer or within the Conv2D function
model.add(MaxPool2D(pool_size=(3,3), strides= (2,2), padding='valid'))
model.add(BatchNormalization())# 2nd layer (conv + pool + batchnorm)
model.add(Conv2D(filters=256, kernel_size=(5,5), strides=(1,1), padding='same', kernel_regularizer=l2(0.0005)))
model.add(Activation('relu'))
model.add(MaxPool2D(pool_size=(3,3), strides=(2,2), padding='valid'))
model.add(BatchNormalization())# layer 3 (conv + batchnorm) <--- note that the authors did not add a POOL layer here
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='same', kernel_regularizer=l2(0.0005)))
model.add(Activation('relu'))
model.add(BatchNormalization())# layer 4 (conv + batchnorm) <--- similar to layer 3
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='same', kernel_regularizer=l2(0.0005)))
model.add(Activation('relu'))
model.add(BatchNormalization())# layer 5 (conv + batchnorm)
model.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding='same', kernel_regularizer=l2(0.0005)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(3,3), strides=(2,2), padding='valid'))# 平铺 CNN 输出,为其提供完全连接的层
model.add(Flatten())# layer 6 (Dense layer + dropout)
model.add(Dense(units = 4096, activation = 'relu'))
model.add(Dropout(0.5))# layer 7 (Dense layers)
model.add(Dense(units = 4096, activation = 'relu'))
model.add(Dropout(0.5))# layer 8 (softmax output layer)
model.add(Dense(units = 1000, activation = 'softmax'))# 打印模型摘要
model.summary()
使用 plot_model 可视化网络
安装
conda install graphviz
conda install pydotplus
from keras.utils import plot_modelplot_model(model, to_file="images/resnet50.png", show_shapes=True)
相关文章:

经典神经网络——AlexNet模型论文详解及代码复现
一、背景 AlexNet是在2012年由Alex Krizhevsky等人提出的,该网络在2012年的ImageNet大赛上夺得了冠军,并且错误率比第二名高了很多。Alexnet共有8层结构,前5层为卷积层,后三层为全连接层。 论文地址:ImageNet Classif…...

flutter开发实战-轮播Swiper更改Custom_layout样式中Widget层级
flutter开发实战-轮播Swiper更改Custom_layout样式中Widget层级 在之前的开发过程中,需要实现卡片轮播效果,但是卡片轮播需要中间大、两边小一些的效果,这里就使用到了Swiper。具体效果如视频所示 添加链接描述 这里需要的效果是中间大、两边…...

【Flutter】graphic图表实现自定义tooltip
renderer graphic中tooltip的TooltipGuide类提供了renderer方法,接收三个参数Size类型,Offset类型,Map<int, Tuple>类型。可查到的文档是真的少,所以只能在源码中扒拉例子,做符合需求的修改。 官方github示例 …...

手机上的记事本怎么打开?安卓手机通用的记事本APP
有不少上班族发现,自己想要在电脑上随手记录一些工作文字内容,直接使用电脑上的记事本工具来编辑文字是比较便捷的。但是如果想要在手机上记录文字内容,就找不到手机上的记事本了。那么手机上的记事本怎么打开?安卓手机通用的记事…...

一起学docker系列之十五深入了解 Docker Network:构建容器间通信的桥梁
目录 1 前言2 什么是 Docker Network3 Docker Network 的不同模式3.1 桥接模式(Bridge)3.2 Host 模式3.3 无网络模式(None)3.4 容器模式(Container) 4 Docker Network 命令及用法4.1 docker network ls4.2 …...

前端OFD文件预览(vue案例cafe-ofd)
0、提示 下面只有vue的使用示例demo ,官文档参考 cafe-ofd - npm 其他平台可以参考 ofd - npm 官方线上demo: ofd 1、安装包 npm install cafe-ofd --save 2、引入 import cafeOfd from cafe-ofd import cafe-ofd/package/index.css Vue.use(cafeOfd) 3、使…...

Java[list/set]通用遍历方法之Iterator
需求:输入一个字符串 将其拆解成单个汉字 然后一行一个输出 这里要求使用到Arraylist集合实现方法Itrator遍历的原理import java.util.ArrayList; import java.util.Collection; import java.util.Iterator;public class Main{public static void main(String[] arg…...

ubuntu/vscode下的c/c++开发之-CMake语法与练习
Cmake学习 1 语法特性介绍 基本语法格式:指令(参数 1 参数 2...) 参数使用括弧括起参数之间使用空格或分号分开 指令是大小写无关的,参数和变量是大小写相关的 set(HELLO hello.cpp) add_executable(hello main.cpp hello.cpp) ADD_EXECUTABLE(hello ma…...

Java(119):ExcelUtil工具类(org.apache.poi读取和写入Excel)
ExcelUtil工具类(XSSFWorkbook读取和写入Excel),入参和出参都是:List<Map<String,Object>> 一、读取Excel testdata.xlsx 1、new XSSFWorkbook对象 File file = new File(filePath); FileInputStream fis = new FileInputStream(file);…...

Kong处理web服务跨域
前言 好久没写文章了,大概有半年多了,这半年故事太多,本文写不下,就写写文章标题问题! 问题描述 关于跨域的本质问题我这里不过多介绍,详细请看历史文章 跨域产生的原因以及常见的解决方案。 我这边是新…...

Kotlin学习——kt里的作用域函数scope function,let,run,with,apply,also
Kotlin 是一门现代但已成熟的编程语言,旨在让开发人员更幸福快乐。 它简洁、安全、可与 Java 及其他语言互操作,并提供了多种方式在多个平台间复用代码,以实现高效编程。 https://play.kotlinlang.org/byExample/01_introduction/02_Functio…...

informer辅助笔记:utils/timefeatures.py
定义了一套与时间特征相关的类和函数,旨在从时间序列数据中提取有用的时间特征,以支持各种时间序列分析和预测任务 from typing import Listimport numpy as np import pandas as pd from pandas.tseries import offsets from pandas.tseries.frequenc…...

[Verilog语法]:===和!==运算符使用注意事项
[Verilog语法]:和!运算符使用注意事项 1, 和 !运算符使用注意事项2,3, 1, 和 !运算符使用注意事项 参考文献: 1,[SystemVerilog语法拾遗] 和!运算符使用注意事项 2, 3,...

mybatis 高并发查询性能问题
场景: 使用Mybatis (3.5.10)SelectProvider注解执行动态sql 在高并发查询时 QPS 很低 问题复现 mybatis 配置 (getOfflineConfigSqlTemplate 该方法返回的是动态sql ) 压测结果 观察线程阻塞情况 此时的QPS 在 …...

我在Vscode学OpenCV 图像处理一(阈值处理、形态学操作【连通性,腐蚀和膨胀,开闭运算,礼帽和黑帽,内核】)
文章目录 一、阈值处理1.1 OpenCV 提供了函数 cv2.threshold()和函数 cv2.adaptiveThreshold(),用于实现阈值处理1.1.1. cv2.threshold():(1)在函数cv2.threshold()中,参数threshold_type用于指定阈值处理的方式。它有以下几种可选的阈值类型…...

Yolov8实现瓶盖正反面检测
一、模型介绍 模型基于 yolov8n数据集采用SKU-110k,这数据集太大了十几个 G,所以只训练了 10 轮左右就拿来微调了 基于原木数据微调:训练 200 轮的效果 10 轮SKU-110k 20 轮原木 200 轮瓶盖正反面 微调模型下载地址https://wwxd.lanzouu.co…...

GAN:WGAN前作
WGAN前作:有原则的方法来训练GANs 论文:https://arxiv.org/abs/1701.04862 发表:ICLR 2017 本文是wgan三部曲的第一部。文中并没有引入新的算法,而是标是朝着完全理解生成对抗网络的训练动态过程迈进理论性的一步。 文中基本是…...

数据库应用:MongoDB 文档与索引管理
目录 一、理论 1.MongoDB文档管理 2.MongoDB索引管理 二、实验 1.MongoDB文档管理 2.MongoDB索引管理(索引添加与删除) 3.MongoDB索引管理(全文索引) 4.MongoDB索引管理(多列索引) 5.MongoDB索引管…...

Python批处理PDF文件,PDF附件轻松批量提取
PDF附件是指在PDF文档中嵌入的其他文件,如图像、表格、音频、视频或其他文档。这些附件可以与PDF文档一起存储、传输和共享,为文档提供了更丰富的内容和更多的功能。通过添加附件,我们可以将相关文件和信息捆绑在一起,使其更易于管…...

Python可迭代对象排序:深入排序算法与定制排序
更多Python学习内容:ipengtao.com 排序在计算机科学中是一项基础而关键的操作,而Python提供了强大的排序工具来满足不同场景下的排序需求。本文将深入探讨Python中对可迭代对象进行排序的方法,涵盖基础排序算法、sorted函数的应用、以及定制排…...

基于matlab的图像去噪算法设计与实现
摘 要 随着我们生活水平的提高,科技产品飞速更新换代,在信息传输中,图像传输所占的比重越来越大。但自然噪声会在图像传输时干扰其传输过程,甚至会使图片不能表达其原来的意义。去噪处理就是为了去除图像中的噪声,从而…...

NFTScan 正式上线 Starknet NFTScan 浏览器和 NFT API 数据服务
2023 年 11 月 30 号,NFTScan 团队正式对外发布了 Starknet NFTScan 浏览器,将为 Starknet 生态的 NFT 开发者和用户提供简洁高效的 NFT 数据搜索查询服务。NFTScan 作为全球领先的 NFT 数据基础设施服务商,Starknet 是继 Bitcoin、Ethereum、…...

2023年亚太杯APMCM数学建模大赛A题水果采摘机器人的图像识别
2023年亚太杯APMCM数学建模大赛 A题 水果采摘机器人的图像识别 原题再现 中国是世界上最大的苹果生产国,年产量约3500万吨。同时,中国也是世界上最大的苹果出口国,世界上每两个苹果中就有一个是中国出口的,世界上超过六分之一的…...

mysql which is not in SELECT list; this is incompatible with DISTINCT解决方案
mysql报错Expression #1 of ORDER BY clause is not in SELECT list, references column ‘xxx’ which is not in SELECT list; this is incompatible with DISTINCT解决方案: 这是在 mysql5.7 版本,DISTINCT 与 order by 在一起用时则会报3065错误。因…...

linux /proc 文件系统
/proc系统是一个伪文件系统,它只存在内存当中,而不占用外存空间,以文件系统的方式为内核与进程提供通信的接口。 /proc目录下有很多以数字命名的目录,每个数字代表进程号PID它们是进程目录。系统中当前运行的每一个进程在/proc下都…...

java开发之个微群聊自动添加好友
请求URL: http://域名/addRoomMemberFriend 请求方式: POST 请求头Headers: Content-Type:application/jsonAuthorization:login接口返回 参数: 参数名必选类型说明wId是String登录实例标识chatRoom…...

Git .gitignore 忽略文件不生效解决方法
.gitignore 匹配规则 *.sample # 忽略所有 .sample 结尾的文件 !lib.sample # 但 lib.sample 除外 /TODO # 仅仅忽略项目根目录下的 TODO 文件,不包括 subdir/TODO build/ # 忽略 build/ 目录下的所有文件 doc/*.txt # 会…...

【Java】16. HashMap
16. HashMap public static String find3(String key) {Map<String, String> map Map.of("bright", "小明","white", "小白","black", "小黑");return map.get(key); }Map.of 用来创建不可变的 Map&#…...

KMP基础架构
前言 Kotlin可以用来开发全栈, 我们所熟悉的各个端几乎都支持(除了鸿蒙) 而我们要开发好KMP项目需要一个好的基础架构,这样不仅代码更清晰,而且能共享更多的代码 正文 我们可以先将KMP分为前端和服务端 它们两端也能共享一些代码,比如接口声明,bean类,基础工具类等 前端和…...

递归实现选择排序.
思路: 1.定位数组中的最大元素或最小元素 2.将其与第一个元素交换位置 3.接着将剩余未排序的元素中的最大值或最小值与第二个元素交换位置 4.以此类推,直到排序完成 示例: [ 8, 5, 1, 9, 3 ] //原始数组 [ 1, 5, 8, 9, 3 ] //3与8交换 [ 1, 3, 8, 9, 5 ] //3与5交换 [ 1,…...