当前位置: 首页 > news >正文

经典神经网络——AlexNet模型论文详解及代码复现

 一、背景

AlexNet是在2012年由Alex Krizhevsky等人提出的,该网络在2012年的ImageNet大赛上夺得了冠军,并且错误率比第二名高了很多。Alexnet共有8层结构,前5层为卷积层,后三层为全连接层。
论文地址:ImageNet Classification with Deep Convolutional Neural Networks

 二、创新点

1、使用大型深度卷积神经网络

      作者使用了一个大型深度卷积神经网络,在ImageNet数据集上取得了非常好的结果。说明大型网络对模型的效果影响比较大,这也是为什么现在大家都在做大模型的原因。

2、ReLU激活函数

      该论文推广了使用整流线型单元(ReLC)激活函数,这有助于训练更深的网络,而不会出现梯度消失的问题。

3、局部响应一体化(LRN)的使用

4、数据增强

      为了减少过拟合,作者采用数据增强的方法。通过对训练图像进行平移、翻转等操作来扩充训练集,从而增强了训练样本的多样性。

5、Dropout技术

      为了进一步减少过拟合,作者采用了dropout技术。在训练过程中,以一定概率将隐藏层神经元的输出置为零。

      可以看出,这篇文章发表在2012年,已经是很久以前,但是这篇文章用到的Relu函数,Dropout技术到目前还是广泛使用的。

三、AlexNet使用PyTorch框架实现

from torch import nnclass AlexNet(nn.Module):def __init__(self,class_num):super(AlexNet,self).__init__()self.class_num = class_num# input(N,3,224,224)self.net = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=96,kernel_size=11,stride=4,padding_mode='zeros'),nn.ReLU(inplace=True),nn.LocalResponseNorm(size=5,alpha=1e-4,beta=0.75,k=2),nn.MaxPool2d(kernel_size=3,stride=2),nn.Conv2d(in_channels=96,out_channels=256,kernel_size=5,stride=1,padding_mode='zeros'),nn.ReLU(inplace=True),nn.LocalResponseNorm(size=5,alpha=1e-4,beta=0.75,k=2),nn.MaxPool2d(kernel_size=3,stride=2),nn.Conv2d(in_channels=256, out_channels=384, kernel_size=3, stride=1, padding_mode='zeros'),nn.ReLU(inplace=True),nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, stride=1, padding_mode='zeros'),nn.ReLU(inplace=True),nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, stride=1, padding_mode='zeros'),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=1,stride=2))self.fully_connected=nn.Sequential(nn.Linear(in_features=256*6*6,out_features=4096),nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(in_features=4096,out_features=4096),nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(in_features=4096,out_features=self.class_num))self.init_bias()def init_bias(self):for layer in self.net:if isinstance(layer,nn.Conv2d):nn.init.normal_(layer.weight,mean=0,std=0.01)nn.init.constant_(layer.bias,0)nn.init.constant_(self.net[4].bias,1)nn.init.constant_(self.net[10].bias,1)nn.init.constant_(self.net[12].bias,1)nn.init.constant_(self.fully_connected[0].bias,1)nn.init.constant_(self.fully_connected[3].bias,1)def forward(self,x):x = self.net(x)x = x.view(-1,256*6*6)x = self.fully_connected(x)return x

四、AlexNet使用keras框架实现

from keras.models import Sequential
from keras.layers import Conv2D, AveragePooling2D, Flatten, Dense,Activation,MaxPool2D, BatchNormalization, Dropout
from keras.regularizers import l2
# 实例化一个空的顺序模型
model = Sequential(name="Alexnet")
# 1st layer (conv + pool + batchnorm)
model.add(Conv2D(filters= 96, kernel_size= (11,11), strides=(4,4), padding='valid', kernel_regularizer=l2(0.0005),
input_shape = (227,227,3)))
model.add(Activation('relu'))  #<---- activation function can be added on its own layer or within the Conv2D function
model.add(MaxPool2D(pool_size=(3,3), strides= (2,2), padding='valid'))
model.add(BatchNormalization())# 2nd layer (conv + pool + batchnorm)
model.add(Conv2D(filters=256, kernel_size=(5,5), strides=(1,1), padding='same', kernel_regularizer=l2(0.0005)))
model.add(Activation('relu'))
model.add(MaxPool2D(pool_size=(3,3), strides=(2,2), padding='valid'))
model.add(BatchNormalization())# layer 3 (conv + batchnorm)      <--- note that the authors did not add a POOL layer here
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='same', kernel_regularizer=l2(0.0005)))
model.add(Activation('relu'))
model.add(BatchNormalization())# layer 4 (conv + batchnorm)      <--- similar to layer 3
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='same', kernel_regularizer=l2(0.0005)))
model.add(Activation('relu'))
model.add(BatchNormalization())# layer 5 (conv + batchnorm)  
model.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding='same', kernel_regularizer=l2(0.0005)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(3,3), strides=(2,2), padding='valid'))# 平铺 CNN 输出,为其提供完全连接的层
model.add(Flatten())# layer 6 (Dense layer + dropout)  
model.add(Dense(units = 4096, activation = 'relu'))
model.add(Dropout(0.5))# layer 7 (Dense layers) 
model.add(Dense(units = 4096, activation = 'relu'))
model.add(Dropout(0.5))# layer 8 (softmax output layer) 
model.add(Dense(units = 1000, activation = 'softmax'))# 打印模型摘要
model.summary()

使用 plot_model 可视化网络

安装
conda install graphviz
conda install pydotplus

from keras.utils import plot_modelplot_model(model, to_file="images/resnet50.png", show_shapes=True)

相关文章:

经典神经网络——AlexNet模型论文详解及代码复现

一、背景 AlexNet是在2012年由Alex Krizhevsky等人提出的&#xff0c;该网络在2012年的ImageNet大赛上夺得了冠军&#xff0c;并且错误率比第二名高了很多。Alexnet共有8层结构&#xff0c;前5层为卷积层&#xff0c;后三层为全连接层。 论文地址&#xff1a;ImageNet Classif…...

flutter开发实战-轮播Swiper更改Custom_layout样式中Widget层级

flutter开发实战-轮播Swiper更改Custom_layout样式中Widget层级 在之前的开发过程中&#xff0c;需要实现卡片轮播效果&#xff0c;但是卡片轮播需要中间大、两边小一些的效果&#xff0c;这里就使用到了Swiper。具体效果如视频所示 添加链接描述 这里需要的效果是中间大、两边…...

【Flutter】graphic图表实现自定义tooltip

renderer graphic中tooltip的TooltipGuide类提供了renderer方法&#xff0c;接收三个参数Size类型&#xff0c;Offset类型&#xff0c;Map<int, Tuple>类型。可查到的文档是真的少&#xff0c;所以只能在源码中扒拉例子&#xff0c;做符合需求的修改。 官方github示例 …...

手机上的记事本怎么打开?安卓手机通用的记事本APP

有不少上班族发现&#xff0c;自己想要在电脑上随手记录一些工作文字内容&#xff0c;直接使用电脑上的记事本工具来编辑文字是比较便捷的。但是如果想要在手机上记录文字内容&#xff0c;就找不到手机上的记事本了。那么手机上的记事本怎么打开&#xff1f;安卓手机通用的记事…...

一起学docker系列之十五深入了解 Docker Network:构建容器间通信的桥梁

目录 1 前言2 什么是 Docker Network3 Docker Network 的不同模式3.1 桥接模式&#xff08;Bridge&#xff09;3.2 Host 模式3.3 无网络模式&#xff08;None&#xff09;3.4 容器模式&#xff08;Container&#xff09; 4 Docker Network 命令及用法4.1 docker network ls4.2 …...

前端OFD文件预览(vue案例cafe-ofd)

0、提示 下面只有vue的使用示例demo &#xff0c;官文档参考 cafe-ofd - npm 其他平台可以参考 ofd - npm 官方线上demo: ofd 1、安装包 npm install cafe-ofd --save 2、引入 import cafeOfd from cafe-ofd import cafe-ofd/package/index.css Vue.use(cafeOfd) 3、使…...

Java[list/set]通用遍历方法之Iterator

需求&#xff1a;输入一个字符串 将其拆解成单个汉字 然后一行一个输出 这里要求使用到Arraylist集合实现方法Itrator遍历的原理import java.util.ArrayList; import java.util.Collection; import java.util.Iterator;public class Main{public static void main(String[] arg…...

ubuntu/vscode下的c/c++开发之-CMake语法与练习

Cmake学习 1 语法特性介绍 基本语法格式&#xff1a;指令(参数 1 参数 2...) 参数使用括弧括起参数之间使用空格或分号分开 指令是大小写无关的&#xff0c;参数和变量是大小写相关的 set(HELLO hello.cpp) add_executable(hello main.cpp hello.cpp) ADD_EXECUTABLE(hello ma…...

Java(119):ExcelUtil工具类(org.apache.poi读取和写入Excel)

ExcelUtil工具类(XSSFWorkbook读取和写入Excel),入参和出参都是:List<Map<String,Object>> 一、读取Excel testdata.xlsx 1、new XSSFWorkbook对象 File file = new File(filePath); FileInputStream fis = new FileInputStream(file);…...

Kong处理web服务跨域

前言 好久没写文章了&#xff0c;大概有半年多了&#xff0c;这半年故事太多&#xff0c;本文写不下&#xff0c;就写写文章标题问题&#xff01; 问题描述 关于跨域的本质问题我这里不过多介绍&#xff0c;详细请看历史文章 跨域产生的原因以及常见的解决方案。 我这边是新…...

Kotlin学习——kt里的作用域函数scope function,let,run,with,apply,also

Kotlin 是一门现代但已成熟的编程语言&#xff0c;旨在让开发人员更幸福快乐。 它简洁、安全、可与 Java 及其他语言互操作&#xff0c;并提供了多种方式在多个平台间复用代码&#xff0c;以实现高效编程。 https://play.kotlinlang.org/byExample/01_introduction/02_Functio…...

informer辅助笔记:utils/timefeatures.py

定义了一套与时间特征相关的类和函数&#xff0c;旨在从时间序列数据中提取有用的时间特征&#xff0c;以支持各种时间序列分析和预测任务 from typing import Listimport numpy as np import pandas as pd from pandas.tseries import offsets from pandas.tseries.frequenc…...

[Verilog语法]:===和!==运算符使用注意事项

[Verilog语法]&#xff1a;和!运算符使用注意事项 1&#xff0c; 和 !运算符使用注意事项2&#xff0c;3&#xff0c; 1&#xff0c; 和 !运算符使用注意事项 参考文献&#xff1a; 1&#xff0c;[SystemVerilog语法拾遗] 和!运算符使用注意事项 2&#xff0c; 3&#xff0c;...

mybatis 高并发查询性能问题

场景&#xff1a; 使用Mybatis &#xff08;3.5.10&#xff09;SelectProvider注解执行动态sql 在高并发查询时 QPS 很低 问题复现 mybatis 配置 &#xff08;getOfflineConfigSqlTemplate 该方法返回的是动态sql &#xff09; 压测结果 观察线程阻塞情况 此时的QPS 在 …...

我在Vscode学OpenCV 图像处理一(阈值处理、形态学操作【连通性,腐蚀和膨胀,开闭运算,礼帽和黑帽,内核】)

文章目录 一、阈值处理1.1 OpenCV 提供了函数 cv2.threshold()和函数 cv2.adaptiveThreshold()&#xff0c;用于实现阈值处理1.1.1. cv2.threshold()&#xff1a;(1)在函数cv2.threshold()中&#xff0c;参数threshold_type用于指定阈值处理的方式。它有以下几种可选的阈值类型…...

Yolov8实现瓶盖正反面检测

一、模型介绍 模型基于 yolov8n数据集采用SKU-110k&#xff0c;这数据集太大了十几个 G&#xff0c;所以只训练了 10 轮左右就拿来微调了 基于原木数据微调&#xff1a;训练 200 轮的效果 10 轮SKU-110k 20 轮原木 200 轮瓶盖正反面 微调模型下载地址https://wwxd.lanzouu.co…...

GAN:WGAN前作

WGAN前作&#xff1a;有原则的方法来训练GANs 论文&#xff1a;https://arxiv.org/abs/1701.04862 发表&#xff1a;ICLR 2017 本文是wgan三部曲的第一部。文中并没有引入新的算法&#xff0c;而是标是朝着完全理解生成对抗网络的训练动态过程迈进理论性的一步。 文中基本是…...

数据库应用:MongoDB 文档与索引管理

目录 一、理论 1.MongoDB文档管理 2.MongoDB索引管理 二、实验 1.MongoDB文档管理 2.MongoDB索引管理&#xff08;索引添加与删除&#xff09; 3.MongoDB索引管理&#xff08;全文索引&#xff09; 4.MongoDB索引管理&#xff08;多列索引&#xff09; 5.MongoDB索引管…...

Python批处理PDF文件,PDF附件轻松批量提取

PDF附件是指在PDF文档中嵌入的其他文件&#xff0c;如图像、表格、音频、视频或其他文档。这些附件可以与PDF文档一起存储、传输和共享&#xff0c;为文档提供了更丰富的内容和更多的功能。通过添加附件&#xff0c;我们可以将相关文件和信息捆绑在一起&#xff0c;使其更易于管…...

Python可迭代对象排序:深入排序算法与定制排序

更多Python学习内容&#xff1a;ipengtao.com 排序在计算机科学中是一项基础而关键的操作&#xff0c;而Python提供了强大的排序工具来满足不同场景下的排序需求。本文将深入探讨Python中对可迭代对象进行排序的方法&#xff0c;涵盖基础排序算法、sorted函数的应用、以及定制排…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...