当前位置: 首页 > news >正文

人群计数CSRNet的pytorch实现

本文中对CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes(CVPR 2018)中的模型进行pytorch实现

import torch;import torch.nn as nn
from torchvision.models import vgg16
vgg=vgg16(pretrained=1)import warnings
warnings.filterwarnings("ignore")
vgg10=torch.nn.Sequential(torch.nn.Conv2d(3,64,3,stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(64, 64, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.MaxPool2d(2,2),torch.nn.Conv2d(64, 128, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(128, 128, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.MaxPool2d(2,2),torch.nn.Conv2d(128, 256, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(256, 256, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(256, 256, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.MaxPool2d(2,2),  #尝试不进行下采样以达到不进行上采样torch.nn.Conv2d(256, 512, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(512, 512, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(512, 512, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),)
class CSRNET(torch.nn.Module):def __init__(self, load_weights=False):super(CSRNET,self).__init__()self.vgg10=vgg10self.dconv1 = torch.nn.Conv2d(512, 512, 3, dilation=2, stride=1, padding=2)self.dconv2 = torch.nn.Conv2d(512, 512, 3, dilation=2, stride=1, padding=2)self.dconv3 = torch.nn.Conv2d(512, 512, 3, dilation=2, stride=1, padding=2)self.dconv4 = torch.nn.Conv2d(512, 256, 3, dilation=2, stride=1, padding=2)self.dconv5 = torch.nn.Conv2d(256, 128, 3, dilation=2, stride=1, padding=2)self.dconv6 = torch.nn.Conv2d(128, 64, 3, dilation=2, stride=1, padding=2)self.finalconv=torch.nn.Conv2d(64,1,1)self.relu=torch.nn.functional.reluif not load_weights:self.vgg10.load_state_dict(vgg.features[0:23].state_dict())def forward(self,x):y=self.vgg10(x)y = self.relu(self.dconv1(y))y = self.relu(self.dconv1(y))y = self.relu(self.dconv2(y))y = self.relu(self.dconv3(y))y = self.relu(self.dconv4(y))y = self.relu(self.dconv5(y))y = self.relu(self.dconv6(y))h=self.finalconv(y)

相关文章:

人群计数CSRNet的pytorch实现

本文中对CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes(CVPR 2018)中的模型进行pytorch实现 import torch;import torch.nn as nn from torchvision.models import vgg16 vggvgg16(pretrained1)import…...

【HTTP协议】简述HTTP协议的概念和特点

🎊专栏【网络编程】 🍔喜欢的诗句:更喜岷山千里雪 三军过后尽开颜。 🎆音乐分享【如愿】 🥰欢迎并且感谢大家指出小吉的问题 文章目录 🌺概念🌺特点🎄请求协议🎄响应协议…...

经典神经网络——AlexNet模型论文详解及代码复现

一、背景 AlexNet是在2012年由Alex Krizhevsky等人提出的,该网络在2012年的ImageNet大赛上夺得了冠军,并且错误率比第二名高了很多。Alexnet共有8层结构,前5层为卷积层,后三层为全连接层。 论文地址:ImageNet Classif…...

flutter开发实战-轮播Swiper更改Custom_layout样式中Widget层级

flutter开发实战-轮播Swiper更改Custom_layout样式中Widget层级 在之前的开发过程中,需要实现卡片轮播效果,但是卡片轮播需要中间大、两边小一些的效果,这里就使用到了Swiper。具体效果如视频所示 添加链接描述 这里需要的效果是中间大、两边…...

【Flutter】graphic图表实现自定义tooltip

renderer graphic中tooltip的TooltipGuide类提供了renderer方法&#xff0c;接收三个参数Size类型&#xff0c;Offset类型&#xff0c;Map<int, Tuple>类型。可查到的文档是真的少&#xff0c;所以只能在源码中扒拉例子&#xff0c;做符合需求的修改。 官方github示例 …...

手机上的记事本怎么打开?安卓手机通用的记事本APP

有不少上班族发现&#xff0c;自己想要在电脑上随手记录一些工作文字内容&#xff0c;直接使用电脑上的记事本工具来编辑文字是比较便捷的。但是如果想要在手机上记录文字内容&#xff0c;就找不到手机上的记事本了。那么手机上的记事本怎么打开&#xff1f;安卓手机通用的记事…...

一起学docker系列之十五深入了解 Docker Network:构建容器间通信的桥梁

目录 1 前言2 什么是 Docker Network3 Docker Network 的不同模式3.1 桥接模式&#xff08;Bridge&#xff09;3.2 Host 模式3.3 无网络模式&#xff08;None&#xff09;3.4 容器模式&#xff08;Container&#xff09; 4 Docker Network 命令及用法4.1 docker network ls4.2 …...

前端OFD文件预览(vue案例cafe-ofd)

0、提示 下面只有vue的使用示例demo &#xff0c;官文档参考 cafe-ofd - npm 其他平台可以参考 ofd - npm 官方线上demo: ofd 1、安装包 npm install cafe-ofd --save 2、引入 import cafeOfd from cafe-ofd import cafe-ofd/package/index.css Vue.use(cafeOfd) 3、使…...

Java[list/set]通用遍历方法之Iterator

需求&#xff1a;输入一个字符串 将其拆解成单个汉字 然后一行一个输出 这里要求使用到Arraylist集合实现方法Itrator遍历的原理import java.util.ArrayList; import java.util.Collection; import java.util.Iterator;public class Main{public static void main(String[] arg…...

ubuntu/vscode下的c/c++开发之-CMake语法与练习

Cmake学习 1 语法特性介绍 基本语法格式&#xff1a;指令(参数 1 参数 2...) 参数使用括弧括起参数之间使用空格或分号分开 指令是大小写无关的&#xff0c;参数和变量是大小写相关的 set(HELLO hello.cpp) add_executable(hello main.cpp hello.cpp) ADD_EXECUTABLE(hello ma…...

Java(119):ExcelUtil工具类(org.apache.poi读取和写入Excel)

ExcelUtil工具类(XSSFWorkbook读取和写入Excel),入参和出参都是:List<Map<String,Object>> 一、读取Excel testdata.xlsx 1、new XSSFWorkbook对象 File file = new File(filePath); FileInputStream fis = new FileInputStream(file);…...

Kong处理web服务跨域

前言 好久没写文章了&#xff0c;大概有半年多了&#xff0c;这半年故事太多&#xff0c;本文写不下&#xff0c;就写写文章标题问题&#xff01; 问题描述 关于跨域的本质问题我这里不过多介绍&#xff0c;详细请看历史文章 跨域产生的原因以及常见的解决方案。 我这边是新…...

Kotlin学习——kt里的作用域函数scope function,let,run,with,apply,also

Kotlin 是一门现代但已成熟的编程语言&#xff0c;旨在让开发人员更幸福快乐。 它简洁、安全、可与 Java 及其他语言互操作&#xff0c;并提供了多种方式在多个平台间复用代码&#xff0c;以实现高效编程。 https://play.kotlinlang.org/byExample/01_introduction/02_Functio…...

informer辅助笔记:utils/timefeatures.py

定义了一套与时间特征相关的类和函数&#xff0c;旨在从时间序列数据中提取有用的时间特征&#xff0c;以支持各种时间序列分析和预测任务 from typing import Listimport numpy as np import pandas as pd from pandas.tseries import offsets from pandas.tseries.frequenc…...

[Verilog语法]:===和!==运算符使用注意事项

[Verilog语法]&#xff1a;和!运算符使用注意事项 1&#xff0c; 和 !运算符使用注意事项2&#xff0c;3&#xff0c; 1&#xff0c; 和 !运算符使用注意事项 参考文献&#xff1a; 1&#xff0c;[SystemVerilog语法拾遗] 和!运算符使用注意事项 2&#xff0c; 3&#xff0c;...

mybatis 高并发查询性能问题

场景&#xff1a; 使用Mybatis &#xff08;3.5.10&#xff09;SelectProvider注解执行动态sql 在高并发查询时 QPS 很低 问题复现 mybatis 配置 &#xff08;getOfflineConfigSqlTemplate 该方法返回的是动态sql &#xff09; 压测结果 观察线程阻塞情况 此时的QPS 在 …...

我在Vscode学OpenCV 图像处理一(阈值处理、形态学操作【连通性,腐蚀和膨胀,开闭运算,礼帽和黑帽,内核】)

文章目录 一、阈值处理1.1 OpenCV 提供了函数 cv2.threshold()和函数 cv2.adaptiveThreshold()&#xff0c;用于实现阈值处理1.1.1. cv2.threshold()&#xff1a;(1)在函数cv2.threshold()中&#xff0c;参数threshold_type用于指定阈值处理的方式。它有以下几种可选的阈值类型…...

Yolov8实现瓶盖正反面检测

一、模型介绍 模型基于 yolov8n数据集采用SKU-110k&#xff0c;这数据集太大了十几个 G&#xff0c;所以只训练了 10 轮左右就拿来微调了 基于原木数据微调&#xff1a;训练 200 轮的效果 10 轮SKU-110k 20 轮原木 200 轮瓶盖正反面 微调模型下载地址https://wwxd.lanzouu.co…...

GAN:WGAN前作

WGAN前作&#xff1a;有原则的方法来训练GANs 论文&#xff1a;https://arxiv.org/abs/1701.04862 发表&#xff1a;ICLR 2017 本文是wgan三部曲的第一部。文中并没有引入新的算法&#xff0c;而是标是朝着完全理解生成对抗网络的训练动态过程迈进理论性的一步。 文中基本是…...

数据库应用:MongoDB 文档与索引管理

目录 一、理论 1.MongoDB文档管理 2.MongoDB索引管理 二、实验 1.MongoDB文档管理 2.MongoDB索引管理&#xff08;索引添加与删除&#xff09; 3.MongoDB索引管理&#xff08;全文索引&#xff09; 4.MongoDB索引管理&#xff08;多列索引&#xff09; 5.MongoDB索引管…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...