人群计数CSRNet的pytorch实现
本文中对CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes(CVPR 2018)中的模型进行pytorch实现
import torch;import torch.nn as nn
from torchvision.models import vgg16
vgg=vgg16(pretrained=1)import warnings
warnings.filterwarnings("ignore")
vgg10=torch.nn.Sequential(torch.nn.Conv2d(3,64,3,stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(64, 64, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.MaxPool2d(2,2),torch.nn.Conv2d(64, 128, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(128, 128, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.MaxPool2d(2,2),torch.nn.Conv2d(128, 256, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(256, 256, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(256, 256, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.MaxPool2d(2,2), #尝试不进行下采样以达到不进行上采样torch.nn.Conv2d(256, 512, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(512, 512, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(512, 512, 3, stride=1,padding=1),torch.nn.ReLU(inplace=True),)
class CSRNET(torch.nn.Module):def __init__(self, load_weights=False):super(CSRNET,self).__init__()self.vgg10=vgg10self.dconv1 = torch.nn.Conv2d(512, 512, 3, dilation=2, stride=1, padding=2)self.dconv2 = torch.nn.Conv2d(512, 512, 3, dilation=2, stride=1, padding=2)self.dconv3 = torch.nn.Conv2d(512, 512, 3, dilation=2, stride=1, padding=2)self.dconv4 = torch.nn.Conv2d(512, 256, 3, dilation=2, stride=1, padding=2)self.dconv5 = torch.nn.Conv2d(256, 128, 3, dilation=2, stride=1, padding=2)self.dconv6 = torch.nn.Conv2d(128, 64, 3, dilation=2, stride=1, padding=2)self.finalconv=torch.nn.Conv2d(64,1,1)self.relu=torch.nn.functional.reluif not load_weights:self.vgg10.load_state_dict(vgg.features[0:23].state_dict())def forward(self,x):y=self.vgg10(x)y = self.relu(self.dconv1(y))y = self.relu(self.dconv1(y))y = self.relu(self.dconv2(y))y = self.relu(self.dconv3(y))y = self.relu(self.dconv4(y))y = self.relu(self.dconv5(y))y = self.relu(self.dconv6(y))h=self.finalconv(y)相关文章:
人群计数CSRNet的pytorch实现
本文中对CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes(CVPR 2018)中的模型进行pytorch实现 import torch;import torch.nn as nn from torchvision.models import vgg16 vggvgg16(pretrained1)import…...
【HTTP协议】简述HTTP协议的概念和特点
🎊专栏【网络编程】 🍔喜欢的诗句:更喜岷山千里雪 三军过后尽开颜。 🎆音乐分享【如愿】 🥰欢迎并且感谢大家指出小吉的问题 文章目录 🌺概念🌺特点🎄请求协议🎄响应协议…...
经典神经网络——AlexNet模型论文详解及代码复现
一、背景 AlexNet是在2012年由Alex Krizhevsky等人提出的,该网络在2012年的ImageNet大赛上夺得了冠军,并且错误率比第二名高了很多。Alexnet共有8层结构,前5层为卷积层,后三层为全连接层。 论文地址:ImageNet Classif…...
flutter开发实战-轮播Swiper更改Custom_layout样式中Widget层级
flutter开发实战-轮播Swiper更改Custom_layout样式中Widget层级 在之前的开发过程中,需要实现卡片轮播效果,但是卡片轮播需要中间大、两边小一些的效果,这里就使用到了Swiper。具体效果如视频所示 添加链接描述 这里需要的效果是中间大、两边…...
【Flutter】graphic图表实现自定义tooltip
renderer graphic中tooltip的TooltipGuide类提供了renderer方法,接收三个参数Size类型,Offset类型,Map<int, Tuple>类型。可查到的文档是真的少,所以只能在源码中扒拉例子,做符合需求的修改。 官方github示例 …...
手机上的记事本怎么打开?安卓手机通用的记事本APP
有不少上班族发现,自己想要在电脑上随手记录一些工作文字内容,直接使用电脑上的记事本工具来编辑文字是比较便捷的。但是如果想要在手机上记录文字内容,就找不到手机上的记事本了。那么手机上的记事本怎么打开?安卓手机通用的记事…...
一起学docker系列之十五深入了解 Docker Network:构建容器间通信的桥梁
目录 1 前言2 什么是 Docker Network3 Docker Network 的不同模式3.1 桥接模式(Bridge)3.2 Host 模式3.3 无网络模式(None)3.4 容器模式(Container) 4 Docker Network 命令及用法4.1 docker network ls4.2 …...
前端OFD文件预览(vue案例cafe-ofd)
0、提示 下面只有vue的使用示例demo ,官文档参考 cafe-ofd - npm 其他平台可以参考 ofd - npm 官方线上demo: ofd 1、安装包 npm install cafe-ofd --save 2、引入 import cafeOfd from cafe-ofd import cafe-ofd/package/index.css Vue.use(cafeOfd) 3、使…...
Java[list/set]通用遍历方法之Iterator
需求:输入一个字符串 将其拆解成单个汉字 然后一行一个输出 这里要求使用到Arraylist集合实现方法Itrator遍历的原理import java.util.ArrayList; import java.util.Collection; import java.util.Iterator;public class Main{public static void main(String[] arg…...
ubuntu/vscode下的c/c++开发之-CMake语法与练习
Cmake学习 1 语法特性介绍 基本语法格式:指令(参数 1 参数 2...) 参数使用括弧括起参数之间使用空格或分号分开 指令是大小写无关的,参数和变量是大小写相关的 set(HELLO hello.cpp) add_executable(hello main.cpp hello.cpp) ADD_EXECUTABLE(hello ma…...
Java(119):ExcelUtil工具类(org.apache.poi读取和写入Excel)
ExcelUtil工具类(XSSFWorkbook读取和写入Excel),入参和出参都是:List<Map<String,Object>> 一、读取Excel testdata.xlsx 1、new XSSFWorkbook对象 File file = new File(filePath); FileInputStream fis = new FileInputStream(file);…...
Kong处理web服务跨域
前言 好久没写文章了,大概有半年多了,这半年故事太多,本文写不下,就写写文章标题问题! 问题描述 关于跨域的本质问题我这里不过多介绍,详细请看历史文章 跨域产生的原因以及常见的解决方案。 我这边是新…...
Kotlin学习——kt里的作用域函数scope function,let,run,with,apply,also
Kotlin 是一门现代但已成熟的编程语言,旨在让开发人员更幸福快乐。 它简洁、安全、可与 Java 及其他语言互操作,并提供了多种方式在多个平台间复用代码,以实现高效编程。 https://play.kotlinlang.org/byExample/01_introduction/02_Functio…...
informer辅助笔记:utils/timefeatures.py
定义了一套与时间特征相关的类和函数,旨在从时间序列数据中提取有用的时间特征,以支持各种时间序列分析和预测任务 from typing import Listimport numpy as np import pandas as pd from pandas.tseries import offsets from pandas.tseries.frequenc…...
[Verilog语法]:===和!==运算符使用注意事项
[Verilog语法]:和!运算符使用注意事项 1, 和 !运算符使用注意事项2,3, 1, 和 !运算符使用注意事项 参考文献: 1,[SystemVerilog语法拾遗] 和!运算符使用注意事项 2, 3,...
mybatis 高并发查询性能问题
场景: 使用Mybatis (3.5.10)SelectProvider注解执行动态sql 在高并发查询时 QPS 很低 问题复现 mybatis 配置 (getOfflineConfigSqlTemplate 该方法返回的是动态sql ) 压测结果 观察线程阻塞情况 此时的QPS 在 …...
我在Vscode学OpenCV 图像处理一(阈值处理、形态学操作【连通性,腐蚀和膨胀,开闭运算,礼帽和黑帽,内核】)
文章目录 一、阈值处理1.1 OpenCV 提供了函数 cv2.threshold()和函数 cv2.adaptiveThreshold(),用于实现阈值处理1.1.1. cv2.threshold():(1)在函数cv2.threshold()中,参数threshold_type用于指定阈值处理的方式。它有以下几种可选的阈值类型…...
Yolov8实现瓶盖正反面检测
一、模型介绍 模型基于 yolov8n数据集采用SKU-110k,这数据集太大了十几个 G,所以只训练了 10 轮左右就拿来微调了 基于原木数据微调:训练 200 轮的效果 10 轮SKU-110k 20 轮原木 200 轮瓶盖正反面 微调模型下载地址https://wwxd.lanzouu.co…...
GAN:WGAN前作
WGAN前作:有原则的方法来训练GANs 论文:https://arxiv.org/abs/1701.04862 发表:ICLR 2017 本文是wgan三部曲的第一部。文中并没有引入新的算法,而是标是朝着完全理解生成对抗网络的训练动态过程迈进理论性的一步。 文中基本是…...
数据库应用:MongoDB 文档与索引管理
目录 一、理论 1.MongoDB文档管理 2.MongoDB索引管理 二、实验 1.MongoDB文档管理 2.MongoDB索引管理(索引添加与删除) 3.MongoDB索引管理(全文索引) 4.MongoDB索引管理(多列索引) 5.MongoDB索引管…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
前端高频面试题2:浏览器/计算机网络
本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...
32单片机——基本定时器
STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...
OCR MLLM Evaluation
为什么需要评测体系?——背景与矛盾 能干的事: 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。干不了的事: 碰到复杂表格(合并单元…...
[特殊字符] 手撸 Redis 互斥锁那些坑
📖 手撸 Redis 互斥锁那些坑 最近搞业务遇到高并发下同一个 key 的互斥操作,想实现分布式环境下的互斥锁。于是私下顺手手撸了个基于 Redis 的简单互斥锁,也顺便跟 Redisson 的 RLock 机制对比了下,记录一波,别踩我踩过…...
