【动态规划】LeetCode-62.不同路径
🎈算法那些事专栏说明:这是一个记录刷题日常的专栏,每个文章标题前都会写明这道题使用的算法。专栏每日计划至少更新1道题目,在这立下Flag🚩
🏠个人主页:Jammingpro
📕专栏链接:算法那些事
🎯每日学习一点点,技术累计看得见
题目
题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
执行示例
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1.向右 -> 向下 -> 向下
2.向下 -> 向下 -> 向右
3.向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
提示
1 <= m, n <= 100
题目数据保证答案小于等于 2 * 1 0 9 10^9 109
题解
以示例1为例,因为机器人只能向右或向下移动,因而到达第0行和第0列各个方格的方法数均为1。而到达map[i][j]的方法数等于map[i-1][j]+map[i][j-1],即当前方格同一列的上一行方法数+当前方格同一行的前一列方法数加和。因为可以从上面一个方格向下走1步到达当前方格,也可以从左侧方格走1步到达当前方格。如下图所示,通过不断执行map[i][j]=map[i-1][j]+map[i][j-1]
,最终map[m-1][n-1]中将保存到达右下角方格的方法数。
从而我们可以得到如下代码↓↓↓
class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>>map(m,vector<int>(n));//将第0行初始化为1for(int i = 0; i < n; i++){map[0][i] = 1;}//将第0列初始化为1for(int i = 0; i < m; i++){map[i][0] = 1;}for(int i = 1; i < m; i++){for(int j = 1; j < n; j++){map[i][j]=map[i-1][j]+map[i][j-1];}}return map[m-1][n-1];}
};
这里我们使用了两次循环去初始化第0行和第0列,我们可以通过多开辟一行一列,并将map[0][1]初始化为1,这时,我们就不再需要初始化第1行第1列。而我们的结果保存在map[m][n]。
ps:这个方法很巧妙,就是不大好描述。大家看一下下方代码,大脑运行一下。↓↓↓
class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>>map(m + 1, vector<int>(n + 1));map[0][1] = 1;for(int i = 1; i <= m; i++)for(int j = 1; j <= n; j++)map[i][j] = map[i - 1][j] + map[i][j - 1];return map[m][n];}
};
本文存在不足,欢迎留言或私信批评、指正。希望我的解决方法能够对你有所帮助~~
今日打卡完成,点亮小星星☆→★
相关文章:

【动态规划】LeetCode-62.不同路径
🎈算法那些事专栏说明:这是一个记录刷题日常的专栏,每个文章标题前都会写明这道题使用的算法。专栏每日计划至少更新1道题目,在这立下Flag🚩 🏠个人主页:Jammingpro 📕专栏链接&…...

对 Vision Transformers 及其基于 CNN-Transformer 的变体的综述
A survey of the Vision Transformers and its CNN-Transformer based Variants 摘要1、介绍2、vit的基本概念2.1 patch嵌入2.2 位置嵌入2.2.1 绝对位置嵌入(APE)2.2.2 相对位置嵌入(RPE)2.2.3卷积位置嵌入(CPE) 2.3 注意力机制2.3.1多头自我注意(MSA) 2.4 Transformer层2.4.1 …...

MongoDB简介
数据库,顾名思义,是保存数据的地方。中华文化博大精深,短短3个文字,就定义了一个强大的数据管理和读写方式出来。数据库,管理的对象是数据。称为库,表示数据在库中有组织,相互之间有微妙的关系。…...
尚硅谷hadoop3.x课程部分资料文件下载,jdk,hadoopjar包
jdk文件百度云下载: 链接:https://pan.baidu.com/s/1MCiGRzOZY8rAFpRJwA3tdw 提取码:kphl hadoop的jar包: 最新版官网链接: Index of /dist/hadoop/core/stable (apache.org) 百度云下载,3.3.3版…...
vue el-radio-group多选封装及使用
基于Element UI库的Vue组件,实现了一个单选/多选框组合的效果,可以根据 type 属性的不同值来切换单选框(默认)和按钮式单选框/多选框。 创建组件index.vue (src/common-ui/radioGroup/index.vue) <template><el-radio-g…...

Kaggle-水果图像分类银奖项目 pytorch Densenet GoogleNet ResNet101 VGG19
一些原理文章 卷积神经网络基础(卷积,池化,激活,全连接) - 知乎 PyTorch 入门与实践(六)卷积神经网络进阶(DenseNet)_pytorch conv1x1_Skr.B的博客-CSDN博客GoogLeNet网…...

TPLink-Wr702N 通过OpenWrt系统打造打印服务器实现无线打印
最近淘到了一个TPLink-Wr702N路由器,而且里面已经刷机为OpenWrt系统了,刚好家里有一台老的USB打印机,就想这通过路由器将打印机改为无线打印机,一番折腾后,居然成功了,这里记录下实现过程,为后面…...
[UGUI]实现从一个道具栏拖拽一个UI道具到另一个道具栏
在Unity游戏开发中,实现UI道具的拖拽功能是一项常见的需求。本文将详细介绍如何使用Unity的UGUI系统和事件系统,实现从一个道具栏拖拽一个UI道具到另一个道具栏的功能。 一、准备工作 首先,你需要在Unity中创建两个道具栏和一些UI道具。道具…...

微服务--08--Seata XA模式 AT模式
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 分布式事务Seata 1.XA模式1.1.两阶段提交1.2.Seata的XA模型1.3.优缺点 AT模式2.1.Seata的AT模型2.2.流程梳理2.3.AT与XA的区别 分布式事务 > 事务–01—CAP理论…...
Doris 数据导入一:Broker Load 方式
1.Doris导入数据的方式总结 导入(Load)功能就是将用户的原始数据导入到 Doris 中。导入成功后,用户即可通过 Mysql 客户端查询数据。为适配不同的数据导入需求,Doris 系统提供了6种不同的导入方式。每种导入方式支持不同的数据源,存在不同的使用方式(异步,同步)。 所有…...

docker踩坑记录:docker容器创建doris容器间无法通讯问题
背景: 开发大数据平台,使用doris作为数据仓储,使用docker做集群部署,先进行开发环境搭建,环境为BE1;FE1,原来使用官方例子,但是官方例子是创建了一个bridge使用172.20.80.0/24通讯,…...

springboot+java校园自助洗衣机预约系统的分析与设计ssm+jsp
洗衣服是每个人都必须做的事情,而洗衣机更成为了人们常见的电器,但是单个洗衣机价格不菲,如果每人都买,就会造成资源的冗余。所有就出现了公用设备,随着时代的发展,很多公用都开始向着无人看守的自助模式经…...

TCP简介及特性
1. TCP协议简介 TCP是Transmission Control Protocol的简称,中文名是传输控制协议。它是一种面向连接的、可靠的、基于IP的传输层协议。两个TCP应用之间在传输数据的之前必须建立一个TCP连接,TCP采用数据流的形式在网络中传输数据。TCP为了保证报文传输的…...
ElasticSearch 排障常用方法
文章目录 1,集群状态,节点在线情况,集群参数配置2,查看异常索引、分片,分析异常原因,手动分配分片 1,集群状态,节点在线情况,集群参数配置 GET _cluster/health?pretty…...
【SA8295P 源码分析 (四)】136 - QNX 如何抓取系统 log 方法 之 网络部分日志抓取方法
【SA8295P 源码分析】136 - QNX 如何抓取系统 log 方法 之 网络部分日志抓取方法 一、slog2info二、获取当前系统网络信息三、tracelogger四、qscan.sh : 用于收集 qnx 文件系统 权限、checksums 等信息系列文章汇总见:《【SA8295P 源码分析 (四)】网络模块 文章链接汇总 - 持…...
传统算法:使用Pygame实现SVM(支持向量机)算法
使用 Pygame 演示了支持向量机(SVM)在二维数据上的分类过程。以下是代码的主要步骤和原理解释: 1、初始化和基本设置 Pygame 初始化: 通过 pygame.init() 初始化 Pygame。 定义颜色和屏幕大小: 定义了一些颜色常量(WHITE, BLACK, RED, BLUE)和屏幕的宽度和高度。 创建…...

cookie wzws_sess** 逆向
声明 本文章中所有内容仅供学习交流,抓包内容、敏感网址、数据接口均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关,若有侵权,请联系我立即删除! 网站: aHR0…...

JIRA 基本使用
该页面可以: 查看个人基本信息以及归属的邮件组修改常用参数配置查看指给自己的 Open 问题查看自己最近的活动记录等 权限管理 Project 权限管理 JIRA 项目有三种通用权限方案: 公开权限方案(默认禁止使用此方案):…...

什么是JVM的内存模型?详细阐述Java中局部变量、常量、类名等信息在JVM中的存储位置
导航: 【Java笔记踩坑汇总】Java基础JavaWebSSMSpringBootSpringCloud瑞吉外卖/黑马旅游/谷粒商城/学成在线设计模式面试题汇总性能调优/架构设计源码-CSDN博客 目录 一、JVM基本介绍 二、JVM内存模型 2.0 概述 2.1 类加载子系统 2.2 运行时数据区 2.2.0 基本…...

c#学习相关系列之as和is的相关用法
一、子类和父类的关系 public class Program{static void Main(string[] args){Animal animal new Dog();// Dog dog (Dog)new Animal(); 编译成功,运行报错Dog dog (Dog)animal;Dog dog new Dog();Animal animal dog; //等价于Animal animal new Dog();}}pub…...

wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...

(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...