LeNet对MNIST 数据集中的图像进行分类--keras实现
我们将训练一个卷积神经网络来对 MNIST 数据库中的图像进行分类,可以与前面所提到的CNN实现对比CNN对 MNIST 数据库中的图像进行分类-CSDN博客
加载 MNIST 数据库
MNIST 是机器学习领域最著名的数据集之一。
- 它有 70,000 张手写数字图像 - 下载非常简单 - 图像尺寸为 28x28 - 灰度图像
from keras.datasets import mnist# 使用 Keras 导入预洗牌 MNIST 数据库
(X_train, y_train), (X_test, y_test) = mnist.load_data()print("The MNIST database has a training set of %d examples." % len(X_train))
print("The MNIST database has a test set of %d examples." % len(X_test))
将前六个训练图像可视化
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib.cm as cm
import numpy as np# 绘制前六幅训练图像
fig = plt.figure(figsize=(20,20))
for i in range(6):ax = fig.add_subplot(1, 6, i+1, xticks=[], yticks=[])ax.imshow(X_train[i], cmap='gray')ax.set_title(str(y_train[i]))
查看图像的更多细节
def visualize_input(img, ax):ax.imshow(img, cmap='gray')width, height = img.shapethresh = img.max()/2.5for x in range(width):for y in range(height):ax.annotate(str(round(img[x][y],2)), xy=(y,x),horizontalalignment='center',verticalalignment='center',color='white' if img[x][y]<thresh else 'black')fig = plt.figure(figsize = (12,12))
ax = fig.add_subplot(111)
visualize_input(X_train[0], ax)
预处理输入图像:通过将每幅图像中的每个像素除以 255 来调整图像比例
# normalize the data to accelerate learning
mean = np.mean(X_train)
std = np.std(X_train)
X_train = (X_train-mean)/(std+1e-7)
X_test = (X_test-mean)/(std+1e-7)print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
对标签进行预处理:使用单热方案对分类整数标签进行编码
from keras.utils import np_utilsnum_classes = 10
# print first ten (integer-valued) training labels
print('Integer-valued labels:')
print(y_train[:10])# one-hot encode the labels
# convert class vectors to binary class matrices
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)# print first ten (one-hot) training labels
print('One-hot labels:')
print(y_train[:10])
重塑数据以适应我们的 CNN(和 input_shape)
# input image dimensions 28x28 pixel images.
img_rows, img_cols = 28, 28X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)print('image input shape: ', input_shape)
print('x_train shape:', X_train.shape)
定义模型架构
论文地址:lecun-01a.pdf
要在 Keras 中实现 LeNet-5,请阅读原始论文并从第 6、7 和 8 页中提取架构信息。以下是构建 LeNet-5 网络的主要启示:
- 每个卷积层的滤波器数量:从图中(以及论文中的定义)可以看出,每个卷积层的深度(滤波器数量)如下:C1 = 6、C3 = 16、C5 = 120 层。
- 每个 CONV 层的内核大小:根据论文,内核大小 = 5 x 5
- 每个卷积层之后都会添加一个子采样层(POOL)。每个单元的感受野是一个 2 x 2 的区域(即 pool_size = 2)。请注意,LeNet-5 创建者使用的是平均池化,它计算的是输入的平均值,而不是我们在早期项目中使用的最大池化层,后者传递的是输入的最大值。如果您有兴趣了解两者的区别,可以同时尝试。在本实验中,我们将采用论文架构。
- 激活函数:LeNet-5 的创建者为隐藏层使用了 tanh 激活函数,因为对称函数被认为比 sigmoid 函数收敛更快。一般来说,我们强烈建议您为网络中的每个卷积层添加 ReLU 激活函数。
需要记住的事项
- 始终为 CNN 中的 Conv2D 层添加 ReLU 激活函数。除了网络中的最后一层,密集层也应具有 ReLU 激活函数。
- 在构建分类网络时,网络的最后一层应该是具有软最大激活函数的密集(FC)层。最终层的节点数应等于数据集中的类别总数。
from keras.models import Sequential
from keras.layers import Conv2D, AveragePooling2D, Flatten, Dense
#Instantiate an empty model
model = Sequential()# C1 Convolutional Layer
model.add(Conv2D(6, kernel_size=(5, 5), strides=(1, 1), activation='tanh', input_shape=input_shape, padding='same'))# S2 Pooling Layer
model.add(AveragePooling2D(pool_size=(2, 2), strides=2, padding='valid'))# C3 Convolutional Layer
model.add(Conv2D(16, kernel_size=(5, 5), strides=(1, 1), activation='tanh', padding='valid'))# S4 Pooling Layer
model.add(AveragePooling2D(pool_size=(2, 2), strides=2, padding='valid'))# C5 Fully Connected Convolutional Layer
model.add(Conv2D(120, kernel_size=(5, 5), strides=(1, 1), activation='tanh', padding='valid'))#Flatten the CNN output so that we can connect it with fully connected layers
model.add(Flatten())# FC6 Fully Connected Layer
model.add(Dense(84, activation='tanh'))# Output Layer with softmax activation
model.add(Dense(10, activation='softmax'))# print the model summary
model.summary()
编译模型
我们将使用亚当优化器
# the loss function is categorical cross entropy since we have multiple classes (10) # compile the model by defining the loss function, optimizer, and performance metric
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
训练模型
LeCun 和他的团队采用了计划衰减学习法,学习率的值按照以下时间表递减:前两个历元为 0.0005,接下来的三个历元为 0.0002,接下来的四个历元为 0.00005,之后为 0.00001。在论文中,作者对其网络进行了 20 个历元的训练。
from keras.callbacks import ModelCheckpoint, LearningRateScheduler# set the learning rate schedule as created in the original paper
def lr_schedule(epoch):if epoch <= 2: lr = 5e-4elif epoch > 2 and epoch <= 5:lr = 2e-4elif epoch > 5 and epoch <= 9:lr = 5e-5else: lr = 1e-5return lrlr_scheduler = LearningRateScheduler(lr_schedule)# set the checkpointer
checkpointer = ModelCheckpoint(filepath='model.weights.best.hdf5', verbose=1, save_best_only=True)# train the model
hist = model.fit(X_train, y_train, batch_size=32, epochs=20,validation_data=(X_test, y_test), callbacks=[checkpointer, lr_scheduler], verbose=2, shuffle=True)
在验证集上加载分类准确率最高的模型
# load the weights that yielded the best validation accuracy
model.load_weights('model.weights.best.hdf5')
计算测试集的分类准确率
# evaluate test accuracy
score = model.evaluate(X_test, y_test, verbose=0)
accuracy = 100*score[1]# print test accuracy
print('Test accuracy: %.4f%%' % accuracy)
评估模型
import matplotlib.pyplot as pltf, ax = plt.subplots()
ax.plot([None] + hist.history['accuracy'], 'o-')
ax.plot([None] + hist.history['val_accuracy'], 'x-')
# 绘制图例并自动使用最佳位置: loc = 0。
ax.legend(['Train acc', 'Validation acc'], loc = 0)
ax.set_title('Training/Validation acc per Epoch')
ax.set_xlabel('Epoch')
ax.set_ylabel('acc')
plt.show()
import matplotlib.pyplot as pltf, ax = plt.subplots()
ax.plot([None] + hist.history['loss'], 'o-')
ax.plot([None] + hist.history['val_loss'], 'x-')# Plot legend and use the best location automatically: loc = 0.
ax.legend(['Train loss', "Val loss"], loc = 0)
ax.set_title('Training/Validation Loss per Epoch')
ax.set_xlabel('Epoch')
ax.set_ylabel('Loss')
plt.show()
相关文章:

LeNet对MNIST 数据集中的图像进行分类--keras实现
我们将训练一个卷积神经网络来对 MNIST 数据库中的图像进行分类,可以与前面所提到的CNN实现对比CNN对 MNIST 数据库中的图像进行分类-CSDN博客 加载 MNIST 数据库 MNIST 是机器学习领域最著名的数据集之一。 它有 70,000 张手写数字图像 - 下载非常简单 - 图像尺…...

Django的回顾的第4天
1.模型层 1.1简介 你可能已经注意到我们在例子视图中返回文本的方式有点特别。 也就是说,HTML被直接硬编码在 Python代码之中。 def current_datetime(request):now datetime.datetime.now()html "<html><body>It is now %s.</body><…...

点云从入门到精通技术详解100篇-基于三维点云的工件曲面轮廓检测与机器人打磨轨迹规划(中)
目录 2.2.2 散乱点云滤波去噪 2.2.3 海量点云数据压缩 2.3 点云采集与预处理实验...

Mapper文件夹在resource目录下但是网页报错找不到productMapper.xml文件的解决
报错如下: 我的Mapper文件夹在resourse目录下但是网页报错找不到productMapper.xml。 结构如下:代码如下:<mappers><mapper resource"com/dhu/mapper/productMapper.xml" /> </mappers> 这段代码是在mybatis-co…...

22.Oracle中的临时表空间
Oracle中的临时表空间 一、临时表空间概述1、什么是临时表空间2、临时表空间的作用 二、临时表空间相关语法三、具体使用案例1、具体使用场景示例2、具体使用场景代码示例 点击此处跳转下一节:23.Oracle11g的UNDO表空间点击此处跳转上一节:21.Oracle的程…...

附录A 指令集基本原理
1. 引言 本书主要关注指令集体系结构4个主题: 1. 提出对指令集进行分类的方法,并对各种方法的优缺点进行定性评估; 2. 提出并分析一些在很大程度上独立于特定指令集的指令集评估数据。 3. 讨论语言与编译器议题以及…...

Unittest单元测试之unittest用例执行顺序
unittest用例执行顺序 当在一个测试类或多个测试模块下,用例数量较多时,unittest在执行用例 (test_xxx)时,并不是按从上到下的顺序执行,有特定的顺序。 unittest框架默认根据ACSII码的顺序加载测试用例&a…...

海云安谢朝海:开发安全领域大模型新实践 人工智能助力高效安全左移
2023年11月29日,2023中国(深圳)金融科技大会成功举行,该会议是深圳连续举办的第七届金融科技主题年度会议,也是2023深圳国际金融科技节重要活动之一。做好金融工作,需要兼顾创新与安全,当智能体…...

Postman接口测试工具完整教程
前言 作为软件开发过程中一个非常重要的环节,软件测试越来越成为软件开发商和用户关注的焦点。完善的测试是软件质量的保证,因此软件测试就成了一项重要而艰巨的工作。要做好这项工作当然也绝非易事。 第一部分:基础篇 postman:4.5.1 1.安…...

Android 滑动按钮(开关) SwitchCompat 自定义风格
原生的SwitchCompat控件如下图,不说不堪入目,也算是不敢恭维了。开个玩笑... 所以我们就需要对SwitchCompat进行自定义风格,效果如下图 代码如下 <androidx.appcompat.widget.SwitchCompatandroid:id"id/switch_compat"android:…...

前端面试灵魂提问-计网(2)
1、websocket 为什么全双工? 1.1 WebSocket是什么 WebSocket 是一种通信协议,它在客户端和服务器之间建立持久的全双工连接。全双工意味着数据可以双向流动,即客户端可以向服务器发送消息,服务器也可以向客户端发送消息,而无需…...

Git修改远程仓库名称
1、先直接在远程点仓库名,然后左侧菜单栏找settings-general,然后直接修改工程名,保存即可。 2、还是在settings-general下,下拉找到Advanced点击Expand展开,然后下拉到最底部 在Change path里填入新的项目名称&#x…...

kafka 集群 ZooKeeper 模式搭建
Apache Kafka是一个开源分布式事件流平台,被数千家公司用于高性能数据管道、流分析、数据集成和关键任务应用程序 Kafka 官网:Apache Kafka 关于ZooKeeper的弃用 根据 Kafka官网信息,随着Apache Kafka 3.5版本的发布,Zookeeper现…...

【LeetCode】 160. 相交链表
相交链表 题目题解 题目 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 图示两个链表在节点 c1 开始相交: 题目数据 保证 整个链式结构中不存在环。 注意&am…...

TZOJ 1429 小明A+B
答案: #include <stdio.h> int main() {int T0, A0, B0, sum0;scanf("%d", &T); //输入测试数据的组数while (T--) //循环T次{scanf("%d %d", &A, &B); //输入AB的值sum A B;if (sum > 100) //如果是三位数{…...

制作openeuler的livecd
下载该项目,执行下面的操作gitee openeuler livecd项目 基于openeuler环境 #安装工具,第一次可能报错,可以再执行一次 make installx86 livecd-creator -d -v --config./config/euler_x86_64.ks --fslabeleuler-LiveCD --cachecache --log…...

B.牛牛排队伍——模拟双链表
当前位置: 首页 > news >正文 B.牛牛排队伍——模拟双链表 news 2023/12/1 15:14:37 分析 题目其实很简单,就是双链表的增删查,但是刚开始,直接vis标记删除元素,查找一个位置的前一个用的while不断向前找,但是TLE;毕竟O(n*k)的复杂度,一开始没有考虑时间复杂度…...

【PyTorch】(四)损失函数与优化器
文章目录 1. 损失函数2. 优化器 1. 损失函数 2. 优化器...

【Python】使用execute(sql)执行insert之后没有插入数据
在sql为insert语句,用Python的sqlalchemy模块中的execute()执行之后没有插入数据的情况,主要是因为sqlalchemy版本的更新,不能直接只用execute()了,MySQL数据库连接的配置和sql都需要多处理一步: 之前的版本ÿ…...

虚拟机备份数据自动化验证原理
备份数据成功备份下来了,但是备份数据是否可用可靠?对于这个问题,最好最可靠的方法是将备份数据实际恢复出来验证。 但是这样的方法,不仅费时费力,而且需要随着备份数据的定期产生,还应当定期做备份数据验…...

前端入门(五)Vue3组合式API特性
文章目录 Vue3简介创建Vue3工程使用vite创建vue-cli方式 常用 Composition API启动项 - setup()setup的执行时机与参数 响应式原理vue2中的响应式vue3中的响应式ref函数reactive函数reactive与ref对比 计算属性 - computed监视属性 - watchwatchEffect Vue3生命周期自定义hook函…...

Doris 数据导入二:Stream Load 方式
Stream load 是一个同步的导入方式,用户通过发送 HTTP 协议发送请求将本地文件或数据流导入到 Doris 中。Stream load 同步执行导入并返回导入结果。用户可直接通过请求的返回体判断本次导入是否成功。 1 适用场景 Stream load 主要适用于导入本地文件,或通过程序导入数据流中…...

【算法刷题】Day10
文章目录 15. 三数之和题干:算法原理:1、排序 暴力枚举 利用set 去重2、排序 双指针 代码: 18. 18. 四数之和题干:算法原理:1、排序 暴力枚举 利用set 去重2、排序 双指针 代码: 15. 三数之和 原题链…...

SAP 如何检查已安装的SAP UI5 版本
第一个方法是直接从FLP中查看 但是部分高版本的FLP中没有这个about, 那么在当前界面可以使用:CTRL ALT SHIFT S 查看当前版本 根据此版本,去进行你的UI5的开发吧...

15、 深度学习之正向传播和反向传播
上一节介绍了训练和推理的概念,这一节接着训练和推理的概念讲一下,神经网络的正向传播和反向传播。 其实单看正向传播和反向传播这两个概念,很好理解。 正向传播(Forward Propagation)是指从输入层到输出层的数据流动过程,而反向传播(Backpropagation)是指数据从输出…...

微信小程序中复制文本
在微信小程序中,可以使用wx.setClipboardData()方法来实现复制文本内容的功能。以下是一个示例代码: // 点击按钮触发复制事件 copyText: function() {var that this;wx.setClipboardData({data: 要复制的文本内容,success: function(res) {wx.showToa…...

vue3学习--初始
...

cmake和vscode 下的cmake的使用详解(二)
第四讲: GDB 调试器 前言: GDB(GNU Debugger) 是一个用来 调试 C/C 程序 的功能强大的 调试器 ,是 Linux 系统开发 C/C 最常用的调试器 程序员可以 使用 GDB 来跟踪程序中的错误 ,从而减少程序员的工作量。 Linux 开发 C/C …...

集成开发环境 PyCharm 的安装【侯小啾python领航班系列(二)】
集成开发环境PyCharm的安装【侯小啾python领航计划系列(二)】 大家好,我是博主侯小啾, 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹…...

mysql从库设置为只读
直奔主题,mysql设置为只读后,无法增删改。 设置命令: mysql> set global read_only1; #1是只读,0是读写 mysql> show global variables like %read_only%; 以下是相关说明: 1、对于数据库读写状态…...