(二)Tiki-taka算法(TTA)求解无人机三维路径规划研究(MATLAB)
一、无人机模型简介:
单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客
参考文献:
[1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120
二、Tiki-taka算法(TTA)简介
极致攻守算法(Tiki-Taka Algorithm,TTA)由Mohd Fadzil Faisae Ab. Rashid于2020年提出,该算法受tiki-taka 足球风格的短传、球员定位和保持控球的特点所启发。其旨在控制控球权并利用其战术优势击败对手,TTA算法新颖高效。单目标应用:Tiki-taka算法(TTA)求解太阳能光伏模型MATLAB_IT猿手的博客-CSDN博客
参考文献:
[1]Ab. Rashid, M.F.F. (2021), "Tiki-taka algorithm: a novel metaheuristic inspired by football playing style", Engineering Computations, Vol. 38 No. 1, pp. 313-343. Tiki-taka algorithm: a novel metaheuristic inspired by football playing style | Emerald Insight
[2]Zamli, Kamal Z , Kader, et al. Selective chaotic maps Tiki-Taka algorithm for the S-box generation and optimization.
三、TTA求解无人机路径规划
(1)部分代码
close all
clear
clc
addpath('./Algorithm/')%添加算法路径
warning off;
%% 三维路径规划模型定义
global startPos goalPos N
N=2;%待优化点的个数(可以修改)
startPos = [10, 10, 80]; %起点(可以修改)
goalPos = [80, 90, 150]; %终点(可以修改)
SearchAgents_no=30; % 种群大小(可以修改)
Function_name='F2'; %F1:随机产生地图 F2:导入固定地图
Max_iteration=50; %最大迭代次数(可以修改)
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_score,Best_pos,curve]=TTA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);%算法优化求解
AlgorithmName='TTA';%算法名字
figure
semilogy(curve,'Color','g','linewidth',3)
xlabel('迭代次数');
ylabel('飞行路径长度');
legend(AlgorithmName)
display(['算法得到的最优适应度: ', num2str(Best_score)]);
Position=[Best_pos(1:dim/3); Best_pos(1+dim/3:2*(dim/3)); Best_pos(1+(2*dim/3):end)]'; %优化点的XYZ坐标(每一行是一个点)
plotFigure(Best_pos,AlgorithmName)%画最优路径
(2)部分结果



无人机飞行路径坐标:
1.0000000e+01 1.0000000e+01 8.0000000e+011.0069761e+01 1.1125126e+01 8.0947246e+011.0158293e+01 1.2169888e+01 8.1882689e+011.0265680e+01 1.3137305e+01 8.2806728e+011.0392006e+01 1.4030396e+01 8.3719762e+011.0537355e+01 1.4852178e+01 8.4622189e+011.0701812e+01 1.5605672e+01 8.5514408e+011.0885461e+01 1.6293895e+01 8.6396818e+011.1088385e+01 1.6919866e+01 8.7269818e+011.1310670e+01 1.7486605e+01 8.8133807e+011.1552399e+01 1.7997129e+01 8.8989182e+011.1813656e+01 1.8454458e+01 8.9836344e+011.2094525e+01 1.8861610e+01 9.0675690e+011.2395092e+01 1.9221604e+01 9.1507620e+011.2715439e+01 1.9537458e+01 9.2332531e+011.3055651e+01 1.9812192e+01 9.3150824e+011.3415813e+01 2.0048823e+01 9.3962896e+011.3796008e+01 2.0250372e+01 9.4769146e+011.4196320e+01 2.0419855e+01 9.5569974e+011.4616835e+01 2.0560293e+01 9.6365777e+011.5057635e+01 2.0674704e+01 9.7156955e+011.5518805e+01 2.0766106e+01 9.7943906e+011.6000429e+01 2.0837518e+01 9.8727029e+011.6502592e+01 2.0891959e+01 9.9506723e+011.7025377e+01 2.0932448e+01 1.0028339e+021.7568869e+01 2.0962003e+01 1.0105742e+021.8133152e+01 2.0983643e+01 1.0182922e+021.8718309e+01 2.1000387e+01 1.0259918e+021.9324426e+01 2.1015253e+01 1.0336771e+021.9951587e+01 2.1031261e+01 1.0413520e+022.0599875e+01 2.1051428e+01 1.0490206e+022.1269375e+01 2.1078774e+01 1.0566867e+022.1960170e+01 2.1116317e+01 1.0643544e+022.2672346e+01 2.1167077e+01 1.0720278e+022.3405986e+01 2.1234070e+01 1.0797107e+022.4161174e+01 2.1320318e+01 1.0874071e+022.4937994e+01 2.1428837e+01 1.0951211e+022.5736532e+01 2.1562647e+01 1.1028566e+022.6556870e+01 2.1724767e+01 1.1106176e+022.7399094e+01 2.1918215e+01 1.1184082e+022.8263286e+01 2.2146009e+01 1.1262322e+022.9149532e+01 2.2411170e+01 1.1340938e+023.0057916e+01 2.2716714e+01 1.1419967e+023.0988521e+01 2.3065662e+01 1.1499452e+023.1941432e+01 2.3461032e+01 1.1579431e+023.2916733e+01 2.3905842e+01 1.1659944e+023.3914508e+01 2.4403111e+01 1.1741031e+023.4934842e+01 2.4955857e+01 1.1822733e+023.5977818e+01 2.5567101e+01 1.1905088e+023.7043521e+01 2.6239860e+01 1.1988137e+023.8132035e+01 2.6977152e+01 1.2071920e+023.9243444e+01 2.7781998e+01 1.2156476e+024.0377832e+01 2.8657415e+01 1.2241846e+024.1535284e+01 2.9606421e+01 1.2328069e+024.2715883e+01 3.0632037e+01 1.2415185e+024.3919714e+01 3.1737280e+01 1.2503234e+024.5146860e+01 3.2925169e+01 1.2592256e+024.6397407e+01 3.4198724e+01 1.2682291e+024.7671438e+01 3.5560962e+01 1.2773379e+024.8969037e+01 3.7014902e+01 1.2865559e+025.0290289e+01 3.8563563e+01 1.2958872e+025.1635278e+01 4.0209964e+01 1.3053356e+025.3004087e+01 4.1957123e+01 1.3149053e+025.4396802e+01 4.3808060e+01 1.3246002e+025.5813505e+01 4.5765792e+01 1.3344243e+025.7254282e+01 4.7833339e+01 1.3443816e+025.8719217e+01 5.0013719e+01 1.3544760e+026.0208393e+01 5.2309952e+01 1.3647116e+026.1721896e+01 5.4725054e+01 1.3750924e+026.3259808e+01 5.7262047e+01 1.3856222e+026.4822214e+01 5.9923947e+01 1.3963052e+026.6409199e+01 6.2713774e+01 1.4071453e+026.8020847e+01 6.5634547e+01 1.4181464e+026.9657241e+01 6.8689283e+01 1.4293127e+027.1318466e+01 7.1881003e+01 1.4406480e+027.3004606e+01 7.5212724e+01 1.4521563e+027.4715745e+01 7.8687466e+01 1.4638417e+027.6451968e+01 8.2308247e+01 1.4757081e+027.8213358e+01 8.6078085e+01 1.4877596e+028.0000000e+01 9.0000000e+01 1.5000000e+02
四、完整MATLAB代码

相关文章:
(二)Tiki-taka算法(TTA)求解无人机三维路径规划研究(MATLAB)
一、无人机模型简介: 单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客 参考文献: [1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120 二、Tiki-taka算法(TTA…...
区间预测 | Matlab实现BP-KDE的BP神经网络结合核密度估计多变量时序区间预测
区间预测 | Matlab实现BP-KDE的BP神经网络结合核密度估计多变量时序区间预测 目录 区间预测 | Matlab实现BP-KDE的BP神经网络结合核密度估计多变量时序区间预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.BP-KDE多变量时间序列区间预测,基于BP神经网络多…...
LD_PRELOAD劫持、ngixn临时文件、无需临时文件rce
LD_PRELOAD劫持 <1> LD_PRELOAD简介 LD_PRELOAD 是linux下的一个环境变量。用于动态链接库的加载,在动态链接库的过程中他的优先级是最高的。类似于 .user.ini 中的 auto_prepend_file,那么我们就可以在自己定义的动态链接库中装入恶意函数。 也…...
循环神经网络训练情感分析
文章目录 1 循环神经网络训练情感分析2 完整代码3 代码详解 1 循环神经网络训练情感分析 下面介绍如何使用长短记忆模型(LSTM)处理情感分类LSTM模型是循环神经网络的一种,按照时间顺序,把信息进行有效的整合,有的信息…...
如何绕过某讯手游保护系统并从内存中获取Unity3D引擎的Dll文件
某讯的手游保护系统用的都是一套,在其官宣的手游加固功能中有一项宣传是对比较热门的Unity3d引擎的手游保护方案,其中对Dll文件的保护介绍如下, “Dll加固混淆针对Unity游戏,对Dll模块的变量名、函数名、类名进行加密混淆处理&…...
【C/C++笔试练习】公有派生、构造函数内不执行多态、抽象类和纯虚函数、多态中的缺省值、虚函数的描述、纯虚函数的声明、查找输入整数二进制中1的个数、手套
文章目录 C/C笔试练习选择部分(1)公有派生(2)构造函数内不执行多态(3)抽象类和纯虚函数(4)多态中的缺省值(5)程序分析(6)重载和隐藏&a…...
Linux shell中的函数定义、传参和调用
Linux shell中的函数定义、传参和调用: 函数定义语法: [ function ] functionName [()] { } 示例: #!/bin/bash# get limit if [ $# -eq 1 ] && [ $1 -gt 0 ]; thenlimit$1echo -e "\nINFO: input limit is $limit" e…...
YoloV8改进策略:基于RevCol,可逆的柱状神经网络的完美迁移,YoloV8的上分利器
文章目录 摘要论文:《RevCol:可逆的柱状神经网络》1、简介2、方法2.1、Multi-LeVEl ReVERsible Unit2.2、可逆列架构2.2.1、MACRo设计2.2.2、MicRo 设计2.3、中间监督3、实验部分3.1、图像分类3.2、目标检测3.3、语义分割3.4、与SOTA基础模型的系统级比较3.5、更多分析实验&l…...
九章量子计算机:引领量子计算的新篇章
九章量子计算机:引领量子计算的新篇章 一、引言 随着科技的飞速发展,量子计算已成为全球科研领域的前沿议题。九章量子计算机作为中国自主研发的量子计算机,具有划时代的意义。本文将深入探讨九章量子计算机的原理、技术特点、应用前景等方面,带领读者领略量子计算的魅力…...
什么是vue的计算属性
Vue的计算属性是一种特殊的属性,它的值是通过对其他属性进行计算得到的。计算属性可以方便地对模型中的数据进行处理和转换,同时还具有缓存机制,只有在依赖的数据发生变化时才会重新计算值。这使得计算属性更加高效,并且可以减少重…...
Linux中文件的打包压缩、解压,下载到本地——zip,tar指令等
目录 1 .zip后缀名: 1.1 zip指令 1.2 unzip指令 2 .tar后缀名 3. sz 指令 4. rz 指令 5. scp指令 1 .zip后缀名: 1.1 zip指令 语法:zip [namefile.zip] [namefile]... 功能:将目录或者文件压缩成zip格式 常用选项:…...
C语言——深入理解指针(4)
目录 1.回调函数 2. qsort 函数的使用 2.1 排序整型数据 2.2 排序结构体数据 3. qsort 函数的模拟实现 1.回调函数 回调函数就是通过一个函数指针调用的函数。 你把函数的地址作为参数传递给另一个函数,当这个指针被用来调用其所指向的函数时,被调…...
Linux基础命令(超全面,建议收藏!)
一、Linux的目录结构 /,根目录是最顶级的目录了 Linux只有一个顶级目录:/ 路径描述的层次关系同样使用/来表示 /home/itheima/a.txt,表示根目录下的home文件夹内有itheima文件夹,内有a.txt 二、Linux命令基础格式 无论是什么…...
LeetCode刷题---合并两个有序链表
个人主页:元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏:http://t.csdnimg.cn/ZxuNL http://t.csdnimg.cn/c9twt 前言:这个专栏主要讲述递归递归、搜索与回溯算法,所以下面题目主要也是这些算法做的 我讲述…...
SQL Server 2008 使用concat报错
SQL Server 2008 使用concat报错 在 SQL Server中,CONCAT 函数是从 SQL Server 2012 版本开始引入的,所以在 SQL Server 2008 中使用 CONCAT 函数会导致错误。 如果你想要连接字符串,有几种替代方法可以考虑: 使用 运算符&…...
视频后期效果制作工具Mocha Pro 2022 Plugins mac中文版软件介绍
Mocha Pro 2022 mac是一款专业的三维摄像机反求摩卡跟踪插件,同时也是一款视频后期效果制作工具,Mocha Pro 2022下载能够给数字媒体艺术家提供强大的、直观的和创新的追踪解决方案用简化的界面、加速的工作流程以及轻松追踪和操作镜头的强大性࿰…...
人工智能时代:AIGC的横空出世
🌈个人主页:聆风吟 🔥系列专栏:数据结构、网络奇遇记 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. 什么是AIGC?二. AIGC的主要特征2.1 文本生成2.2 图像生成2.3 语音生成2.4 视…...
基于ChatGPT等大模型快速爬虫提取网页内容
本文将介绍一种基于ChatGPT等大模型快速爬虫提取网页内容的方法。传统的爬虫方法需要花费较大精力分析页面的html元素,而这种方法只需要两步就可以完成。下面将从使用步骤、方法扩展和示例程序三部分进行介绍。RdFast智能创作机器人小程序预计本周2023-11-30之前集成…...
JavaScript WebAPI(三)(详解)
这次介绍一下webAPI中的一些知识: 回调函数 回调函数是指 如果将函数A做为参数传递给函数B时,我们称函数A为回调函数 例如: // 立即执行函数中传递的函数是一个回调函数 (function(){ console.log("我是回调函数") })(); // …...
LeetCode哈希表:最长连续序列
LeetCode哈希表:最长连续序列 题目描述 给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 1: 输入&…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
Python实现简单音频数据压缩与解压算法
Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...
