当前位置: 首页 > news >正文

循环神经网络训练情感分析

文章目录

  • 1 循环神经网络训练情感分析
  • 2 完整代码
  • 3 代码详解

1 循环神经网络训练情感分析

  • 下面介绍如何使用长短记忆模型(LSTM)处理情感分类
  • LSTM模型是循环神经网络的一种,按照时间顺序,把信息进行有效的整合,有的信息会保留,有的信息会丢弃,在时间t,你获得的信息(比如对段落文字的理解)理所应当会包含之前的信息
  • LSTM对信息的处理主要通过矩阵的乘积运算来实现的

2 完整代码

这段代码是一个使用Keras建立、编译和训练一个简单的循环神经网络(Recurrent Neural Network,RNN)模型的示例。这个模型似乎被设计用于处理文本数据的情感分析任务,其中 x_train 和 x_test 是训练和测试数据的输入序列,y_train 和 y_test 是对应的标签(二进制情感类别,例如正面或负面情感)。

from keras.models import Sequential
from keras.layers import LSTM
from keras.models import Sequential
from keras.layers import Dense
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
import numpy as np
from keras.datasets import imdbfrom keras.layers import Dense,Dropout,Activation,Flatten(x_train,y_train),(x_test,y_test) = imdb.load_data()maxword = 400
x_train = sequence.pad_sequences(x_train,maxlen=maxword)
x_test = sequence.pad_sequences(x_test,maxlen=maxword)
vocab_size = np.max([np.max(x_train[i]) for i in range(x_train.shape[0])])+1
model = Sequential()
model.add(Embedding(vocab_size,64,input_length = maxword))
model.add(LSTM(128,return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(64,return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(32))
model.add(Dropout(0.2))
model.add(Dense(1,activation = 'sigmoid'))model.compile(loss='binary_crossentropy',optimizer='rmsprop',metrics=['accuracy'])
print(model.summary())model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=5,batch_size=100)
scores = model.evaluate(x_test,y_test)
print(scores)

3 代码详解

  1. 序列填充:

    x_train = sequence.pad_sequences(x_train, maxlen=maxword)
    x_test = sequence.pad_sequences(x_test, maxlen=maxword)
    

    这里使用 sequence.pad_sequences 函数对输入的序列进行填充,使它们达到相同的长度 maxword。这是因为循环神经网络(RNN)通常要求输入序列长度相同。

  2. 构建模型:

    model = Sequential()
    model.add(Embedding(vocab_size, 64, input_length=maxword))
    

    这里构建了一个序贯模型,首先添加了一个嵌入层(Embedding Layer)。这个嵌入层用于将整数序列(单词索引)映射为密集向量,其大小为64。

    model.add(LSTM(128, return_sequences=True))
    model.add(Dropout(0.2))
    

    接着添加了一个具有128个单元的LSTM层,设置 return_sequences=True 表示输出完整的序列,而不是只输出最终输出。

    model.add(LSTM(64, return_sequences=True))
    model.add(Dropout(0.2))
    

    添加了一个具有64个单元的LSTM层。

    model.add(LSTM(32))
    model.add(Dropout(0.2))
    

    最后添加了一个具有32个单元的LSTM层。

    model.add(Dense(1, activation='sigmoid'))
    

    最后添加了一个全连接层,输出维度为1,使用 sigmoid 激活函数,通常用于二分类问题。

  3. 模型编译:

    model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
    

    编译模型,使用二元交叉熵作为损失函数,rmsprop 作为优化器,同时监控准确率。

  4. 模型摘要输出:

    print(model.summary())
    

    打印模型的摘要,显示每一层的参数数量等信息。

  5. 模型训练:

    model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=5, batch_size=100)
    

    使用训练数据进行模型训练,指定验证数据集、训练轮数(epochs)、批量大小(batch_size)等参数。

  6. 模型评估:

    scores = model.evaluate(x_test, y_test)
    

    使用测试数据评估模型性能,并将结果保存在 scores 中。这个例子中使用了二分类任务,因此评估结果中会包括损失值和准确率等信息。

相关文章:

循环神经网络训练情感分析

文章目录 1 循环神经网络训练情感分析2 完整代码3 代码详解 1 循环神经网络训练情感分析 下面介绍如何使用长短记忆模型(LSTM)处理情感分类LSTM模型是循环神经网络的一种,按照时间顺序,把信息进行有效的整合,有的信息…...

如何绕过某讯手游保护系统并从内存中获取Unity3D引擎的Dll文件

​ 某讯的手游保护系统用的都是一套,在其官宣的手游加固功能中有一项宣传是对比较热门的Unity3d引擎的手游保护方案,其中对Dll文件的保护介绍如下, “Dll加固混淆针对Unity游戏,对Dll模块的变量名、函数名、类名进行加密混淆处理&…...

【C/C++笔试练习】公有派生、构造函数内不执行多态、抽象类和纯虚函数、多态中的缺省值、虚函数的描述、纯虚函数的声明、查找输入整数二进制中1的个数、手套

文章目录 C/C笔试练习选择部分(1)公有派生(2)构造函数内不执行多态(3)抽象类和纯虚函数(4)多态中的缺省值(5)程序分析(6)重载和隐藏&a…...

Linux shell中的函数定义、传参和调用

Linux shell中的函数定义、传参和调用: 函数定义语法: [ function ] functionName [()] { } 示例: #!/bin/bash# get limit if [ $# -eq 1 ] && [ $1 -gt 0 ]; thenlimit$1echo -e "\nINFO: input limit is $limit" e…...

YoloV8改进策略:基于RevCol,可逆的柱状神经网络的完美迁移,YoloV8的上分利器

文章目录 摘要论文:《RevCol:可逆的柱状神经网络》1、简介2、方法2.1、Multi-LeVEl ReVERsible Unit2.2、可逆列架构2.2.1、MACRo设计2.2.2、MicRo 设计2.3、中间监督3、实验部分3.1、图像分类3.2、目标检测3.3、语义分割3.4、与SOTA基础模型的系统级比较3.5、更多分析实验&l…...

九章量子计算机:引领量子计算的新篇章

九章量子计算机:引领量子计算的新篇章 一、引言 随着科技的飞速发展,量子计算已成为全球科研领域的前沿议题。九章量子计算机作为中国自主研发的量子计算机,具有划时代的意义。本文将深入探讨九章量子计算机的原理、技术特点、应用前景等方面,带领读者领略量子计算的魅力…...

什么是vue的计算属性

Vue的计算属性是一种特殊的属性,它的值是通过对其他属性进行计算得到的。计算属性可以方便地对模型中的数据进行处理和转换,同时还具有缓存机制,只有在依赖的数据发生变化时才会重新计算值。这使得计算属性更加高效,并且可以减少重…...

Linux中文件的打包压缩、解压,下载到本地——zip,tar指令等

目录 1 .zip后缀名: 1.1 zip指令 1.2 unzip指令 2 .tar后缀名 3. sz 指令 4. rz 指令 5. scp指令 1 .zip后缀名: 1.1 zip指令 语法:zip [namefile.zip] [namefile]... 功能:将目录或者文件压缩成zip格式 常用选项&#xff1a…...

C语言——深入理解指针(4)

目录 1.回调函数 2. qsort 函数的使用 2.1 排序整型数据 2.2 排序结构体数据 3. qsort 函数的模拟实现 1.回调函数 回调函数就是通过一个函数指针调用的函数。 你把函数的地址作为参数传递给另一个函数,当这个指针被用来调用其所指向的函数时,被调…...

Linux基础命令(超全面,建议收藏!)

一、Linux的目录结构 /,根目录是最顶级的目录了 Linux只有一个顶级目录:/ 路径描述的层次关系同样使用/来表示 /home/itheima/a.txt,表示根目录下的home文件夹内有itheima文件夹,内有a.txt 二、Linux命令基础格式 无论是什么…...

LeetCode刷题---合并两个有序链表

个人主页:元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏:http://t.csdnimg.cn/ZxuNL http://t.csdnimg.cn/c9twt 前言:这个专栏主要讲述递归递归、搜索与回溯算法,所以下面题目主要也是这些算法做的 我讲述…...

SQL Server 2008 使用concat报错

SQL Server 2008 使用concat报错 在 SQL Server中,CONCAT 函数是从 SQL Server 2012 版本开始引入的,所以在 SQL Server 2008 中使用 CONCAT 函数会导致错误。 如果你想要连接字符串,有几种替代方法可以考虑: 使用 运算符&…...

视频后期效果制作工具Mocha Pro 2022 Plugins mac中文版软件介绍

Mocha Pro 2022 mac是一款专业的三维摄像机反求摩卡跟踪插件,同时也是一款视频后期效果制作工具,Mocha Pro 2022下载能够给数字媒体艺术家提供强大的、直观的和创新的追踪解决方案用简化的界面、加速的工作流程以及轻松追踪和操作镜头的强大性&#xff0…...

人工智能时代:AIGC的横空出世

🌈个人主页:聆风吟 🔥系列专栏:数据结构、网络奇遇记 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. 什么是AIGC?二. AIGC的主要特征2.1 文本生成2.2 图像生成2.3 语音生成2.4 视…...

基于ChatGPT等大模型快速爬虫提取网页内容

本文将介绍一种基于ChatGPT等大模型快速爬虫提取网页内容的方法。传统的爬虫方法需要花费较大精力分析页面的html元素,而这种方法只需要两步就可以完成。下面将从使用步骤、方法扩展和示例程序三部分进行介绍。RdFast智能创作机器人小程序预计本周2023-11-30之前集成…...

JavaScript WebAPI(三)(详解)

这次介绍一下webAPI中的一些知识: 回调函数 回调函数是指 如果将函数A做为参数传递给函数B时,我们称函数A为回调函数 例如: // 立即执行函数中传递的函数是一个回调函数 (function(){ console.log("我是回调函数") })(); // …...

LeetCode哈希表:最长连续序列

LeetCode哈希表:最长连续序列 题目描述 给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 1: 输入&…...

SpringBoot+redis实现接口防刷

写一个RedisService,实现获取Redis 的set、get、incr(相当于计数器) 写inferface注解类 做一个拦截器,因为要先于控制器判断 将拦截器注入Springboot 文章目录 目录 文章目录 前言 一、引入依赖 二、使用步骤 2.1 RedisServic…...

5G承载网和大客户承载的演进

文章目录 移动4/5G承载网联通和电信4/5G承载网M-OTN(Metro-optimized OTN),城域型光传送网PeOTN(packet enhanced optical transport network),分组增强型OTN板卡增强型PeOTN集中交叉型PeOTN VC-OTN&#x…...

智慧工地一体化解决方案(里程碑管理)源码

智慧工地为管理人员提供及时、高效、优质的远程管理服务,提升安全管理水平,确保施工安全提高施工质量。实现对人、机、料、法、环的全方位实时监控,变被动“监督”为主动“监控”。 一、建设背景 施工现场有数量多、分布广,总部统…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...