当前位置: 首页 > news >正文

循环神经网络训练情感分析

文章目录

  • 1 循环神经网络训练情感分析
  • 2 完整代码
  • 3 代码详解

1 循环神经网络训练情感分析

  • 下面介绍如何使用长短记忆模型(LSTM)处理情感分类
  • LSTM模型是循环神经网络的一种,按照时间顺序,把信息进行有效的整合,有的信息会保留,有的信息会丢弃,在时间t,你获得的信息(比如对段落文字的理解)理所应当会包含之前的信息
  • LSTM对信息的处理主要通过矩阵的乘积运算来实现的

2 完整代码

这段代码是一个使用Keras建立、编译和训练一个简单的循环神经网络(Recurrent Neural Network,RNN)模型的示例。这个模型似乎被设计用于处理文本数据的情感分析任务,其中 x_train 和 x_test 是训练和测试数据的输入序列,y_train 和 y_test 是对应的标签(二进制情感类别,例如正面或负面情感)。

from keras.models import Sequential
from keras.layers import LSTM
from keras.models import Sequential
from keras.layers import Dense
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
import numpy as np
from keras.datasets import imdbfrom keras.layers import Dense,Dropout,Activation,Flatten(x_train,y_train),(x_test,y_test) = imdb.load_data()maxword = 400
x_train = sequence.pad_sequences(x_train,maxlen=maxword)
x_test = sequence.pad_sequences(x_test,maxlen=maxword)
vocab_size = np.max([np.max(x_train[i]) for i in range(x_train.shape[0])])+1
model = Sequential()
model.add(Embedding(vocab_size,64,input_length = maxword))
model.add(LSTM(128,return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(64,return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(32))
model.add(Dropout(0.2))
model.add(Dense(1,activation = 'sigmoid'))model.compile(loss='binary_crossentropy',optimizer='rmsprop',metrics=['accuracy'])
print(model.summary())model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=5,batch_size=100)
scores = model.evaluate(x_test,y_test)
print(scores)

3 代码详解

  1. 序列填充:

    x_train = sequence.pad_sequences(x_train, maxlen=maxword)
    x_test = sequence.pad_sequences(x_test, maxlen=maxword)
    

    这里使用 sequence.pad_sequences 函数对输入的序列进行填充,使它们达到相同的长度 maxword。这是因为循环神经网络(RNN)通常要求输入序列长度相同。

  2. 构建模型:

    model = Sequential()
    model.add(Embedding(vocab_size, 64, input_length=maxword))
    

    这里构建了一个序贯模型,首先添加了一个嵌入层(Embedding Layer)。这个嵌入层用于将整数序列(单词索引)映射为密集向量,其大小为64。

    model.add(LSTM(128, return_sequences=True))
    model.add(Dropout(0.2))
    

    接着添加了一个具有128个单元的LSTM层,设置 return_sequences=True 表示输出完整的序列,而不是只输出最终输出。

    model.add(LSTM(64, return_sequences=True))
    model.add(Dropout(0.2))
    

    添加了一个具有64个单元的LSTM层。

    model.add(LSTM(32))
    model.add(Dropout(0.2))
    

    最后添加了一个具有32个单元的LSTM层。

    model.add(Dense(1, activation='sigmoid'))
    

    最后添加了一个全连接层,输出维度为1,使用 sigmoid 激活函数,通常用于二分类问题。

  3. 模型编译:

    model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
    

    编译模型,使用二元交叉熵作为损失函数,rmsprop 作为优化器,同时监控准确率。

  4. 模型摘要输出:

    print(model.summary())
    

    打印模型的摘要,显示每一层的参数数量等信息。

  5. 模型训练:

    model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=5, batch_size=100)
    

    使用训练数据进行模型训练,指定验证数据集、训练轮数(epochs)、批量大小(batch_size)等参数。

  6. 模型评估:

    scores = model.evaluate(x_test, y_test)
    

    使用测试数据评估模型性能,并将结果保存在 scores 中。这个例子中使用了二分类任务,因此评估结果中会包括损失值和准确率等信息。

相关文章:

循环神经网络训练情感分析

文章目录 1 循环神经网络训练情感分析2 完整代码3 代码详解 1 循环神经网络训练情感分析 下面介绍如何使用长短记忆模型(LSTM)处理情感分类LSTM模型是循环神经网络的一种,按照时间顺序,把信息进行有效的整合,有的信息…...

如何绕过某讯手游保护系统并从内存中获取Unity3D引擎的Dll文件

​ 某讯的手游保护系统用的都是一套,在其官宣的手游加固功能中有一项宣传是对比较热门的Unity3d引擎的手游保护方案,其中对Dll文件的保护介绍如下, “Dll加固混淆针对Unity游戏,对Dll模块的变量名、函数名、类名进行加密混淆处理&…...

【C/C++笔试练习】公有派生、构造函数内不执行多态、抽象类和纯虚函数、多态中的缺省值、虚函数的描述、纯虚函数的声明、查找输入整数二进制中1的个数、手套

文章目录 C/C笔试练习选择部分(1)公有派生(2)构造函数内不执行多态(3)抽象类和纯虚函数(4)多态中的缺省值(5)程序分析(6)重载和隐藏&a…...

Linux shell中的函数定义、传参和调用

Linux shell中的函数定义、传参和调用: 函数定义语法: [ function ] functionName [()] { } 示例: #!/bin/bash# get limit if [ $# -eq 1 ] && [ $1 -gt 0 ]; thenlimit$1echo -e "\nINFO: input limit is $limit" e…...

YoloV8改进策略:基于RevCol,可逆的柱状神经网络的完美迁移,YoloV8的上分利器

文章目录 摘要论文:《RevCol:可逆的柱状神经网络》1、简介2、方法2.1、Multi-LeVEl ReVERsible Unit2.2、可逆列架构2.2.1、MACRo设计2.2.2、MicRo 设计2.3、中间监督3、实验部分3.1、图像分类3.2、目标检测3.3、语义分割3.4、与SOTA基础模型的系统级比较3.5、更多分析实验&l…...

九章量子计算机:引领量子计算的新篇章

九章量子计算机:引领量子计算的新篇章 一、引言 随着科技的飞速发展,量子计算已成为全球科研领域的前沿议题。九章量子计算机作为中国自主研发的量子计算机,具有划时代的意义。本文将深入探讨九章量子计算机的原理、技术特点、应用前景等方面,带领读者领略量子计算的魅力…...

什么是vue的计算属性

Vue的计算属性是一种特殊的属性,它的值是通过对其他属性进行计算得到的。计算属性可以方便地对模型中的数据进行处理和转换,同时还具有缓存机制,只有在依赖的数据发生变化时才会重新计算值。这使得计算属性更加高效,并且可以减少重…...

Linux中文件的打包压缩、解压,下载到本地——zip,tar指令等

目录 1 .zip后缀名: 1.1 zip指令 1.2 unzip指令 2 .tar后缀名 3. sz 指令 4. rz 指令 5. scp指令 1 .zip后缀名: 1.1 zip指令 语法:zip [namefile.zip] [namefile]... 功能:将目录或者文件压缩成zip格式 常用选项&#xff1a…...

C语言——深入理解指针(4)

目录 1.回调函数 2. qsort 函数的使用 2.1 排序整型数据 2.2 排序结构体数据 3. qsort 函数的模拟实现 1.回调函数 回调函数就是通过一个函数指针调用的函数。 你把函数的地址作为参数传递给另一个函数,当这个指针被用来调用其所指向的函数时,被调…...

Linux基础命令(超全面,建议收藏!)

一、Linux的目录结构 /,根目录是最顶级的目录了 Linux只有一个顶级目录:/ 路径描述的层次关系同样使用/来表示 /home/itheima/a.txt,表示根目录下的home文件夹内有itheima文件夹,内有a.txt 二、Linux命令基础格式 无论是什么…...

LeetCode刷题---合并两个有序链表

个人主页:元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏:http://t.csdnimg.cn/ZxuNL http://t.csdnimg.cn/c9twt 前言:这个专栏主要讲述递归递归、搜索与回溯算法,所以下面题目主要也是这些算法做的 我讲述…...

SQL Server 2008 使用concat报错

SQL Server 2008 使用concat报错 在 SQL Server中,CONCAT 函数是从 SQL Server 2012 版本开始引入的,所以在 SQL Server 2008 中使用 CONCAT 函数会导致错误。 如果你想要连接字符串,有几种替代方法可以考虑: 使用 运算符&…...

视频后期效果制作工具Mocha Pro 2022 Plugins mac中文版软件介绍

Mocha Pro 2022 mac是一款专业的三维摄像机反求摩卡跟踪插件,同时也是一款视频后期效果制作工具,Mocha Pro 2022下载能够给数字媒体艺术家提供强大的、直观的和创新的追踪解决方案用简化的界面、加速的工作流程以及轻松追踪和操作镜头的强大性&#xff0…...

人工智能时代:AIGC的横空出世

🌈个人主页:聆风吟 🔥系列专栏:数据结构、网络奇遇记 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. 什么是AIGC?二. AIGC的主要特征2.1 文本生成2.2 图像生成2.3 语音生成2.4 视…...

基于ChatGPT等大模型快速爬虫提取网页内容

本文将介绍一种基于ChatGPT等大模型快速爬虫提取网页内容的方法。传统的爬虫方法需要花费较大精力分析页面的html元素,而这种方法只需要两步就可以完成。下面将从使用步骤、方法扩展和示例程序三部分进行介绍。RdFast智能创作机器人小程序预计本周2023-11-30之前集成…...

JavaScript WebAPI(三)(详解)

这次介绍一下webAPI中的一些知识: 回调函数 回调函数是指 如果将函数A做为参数传递给函数B时,我们称函数A为回调函数 例如: // 立即执行函数中传递的函数是一个回调函数 (function(){ console.log("我是回调函数") })(); // …...

LeetCode哈希表:最长连续序列

LeetCode哈希表:最长连续序列 题目描述 给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 1: 输入&…...

SpringBoot+redis实现接口防刷

写一个RedisService,实现获取Redis 的set、get、incr(相当于计数器) 写inferface注解类 做一个拦截器,因为要先于控制器判断 将拦截器注入Springboot 文章目录 目录 文章目录 前言 一、引入依赖 二、使用步骤 2.1 RedisServic…...

5G承载网和大客户承载的演进

文章目录 移动4/5G承载网联通和电信4/5G承载网M-OTN(Metro-optimized OTN),城域型光传送网PeOTN(packet enhanced optical transport network),分组增强型OTN板卡增强型PeOTN集中交叉型PeOTN VC-OTN&#x…...

智慧工地一体化解决方案(里程碑管理)源码

智慧工地为管理人员提供及时、高效、优质的远程管理服务,提升安全管理水平,确保施工安全提高施工质量。实现对人、机、料、法、环的全方位实时监控,变被动“监督”为主动“监控”。 一、建设背景 施工现场有数量多、分布广,总部统…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

uniapp中使用aixos 报错

问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

AI,如何重构理解、匹配与决策?

AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库,提供了高效、安全的文本格式化功能,是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析

Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...

PydanticAI快速入门示例

参考链接:https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...