当前位置: 首页 > news >正文

循环神经网络训练情感分析

文章目录

  • 1 循环神经网络训练情感分析
  • 2 完整代码
  • 3 代码详解

1 循环神经网络训练情感分析

  • 下面介绍如何使用长短记忆模型(LSTM)处理情感分类
  • LSTM模型是循环神经网络的一种,按照时间顺序,把信息进行有效的整合,有的信息会保留,有的信息会丢弃,在时间t,你获得的信息(比如对段落文字的理解)理所应当会包含之前的信息
  • LSTM对信息的处理主要通过矩阵的乘积运算来实现的

2 完整代码

这段代码是一个使用Keras建立、编译和训练一个简单的循环神经网络(Recurrent Neural Network,RNN)模型的示例。这个模型似乎被设计用于处理文本数据的情感分析任务,其中 x_train 和 x_test 是训练和测试数据的输入序列,y_train 和 y_test 是对应的标签(二进制情感类别,例如正面或负面情感)。

from keras.models import Sequential
from keras.layers import LSTM
from keras.models import Sequential
from keras.layers import Dense
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
import numpy as np
from keras.datasets import imdbfrom keras.layers import Dense,Dropout,Activation,Flatten(x_train,y_train),(x_test,y_test) = imdb.load_data()maxword = 400
x_train = sequence.pad_sequences(x_train,maxlen=maxword)
x_test = sequence.pad_sequences(x_test,maxlen=maxword)
vocab_size = np.max([np.max(x_train[i]) for i in range(x_train.shape[0])])+1
model = Sequential()
model.add(Embedding(vocab_size,64,input_length = maxword))
model.add(LSTM(128,return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(64,return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(32))
model.add(Dropout(0.2))
model.add(Dense(1,activation = 'sigmoid'))model.compile(loss='binary_crossentropy',optimizer='rmsprop',metrics=['accuracy'])
print(model.summary())model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=5,batch_size=100)
scores = model.evaluate(x_test,y_test)
print(scores)

3 代码详解

  1. 序列填充:

    x_train = sequence.pad_sequences(x_train, maxlen=maxword)
    x_test = sequence.pad_sequences(x_test, maxlen=maxword)
    

    这里使用 sequence.pad_sequences 函数对输入的序列进行填充,使它们达到相同的长度 maxword。这是因为循环神经网络(RNN)通常要求输入序列长度相同。

  2. 构建模型:

    model = Sequential()
    model.add(Embedding(vocab_size, 64, input_length=maxword))
    

    这里构建了一个序贯模型,首先添加了一个嵌入层(Embedding Layer)。这个嵌入层用于将整数序列(单词索引)映射为密集向量,其大小为64。

    model.add(LSTM(128, return_sequences=True))
    model.add(Dropout(0.2))
    

    接着添加了一个具有128个单元的LSTM层,设置 return_sequences=True 表示输出完整的序列,而不是只输出最终输出。

    model.add(LSTM(64, return_sequences=True))
    model.add(Dropout(0.2))
    

    添加了一个具有64个单元的LSTM层。

    model.add(LSTM(32))
    model.add(Dropout(0.2))
    

    最后添加了一个具有32个单元的LSTM层。

    model.add(Dense(1, activation='sigmoid'))
    

    最后添加了一个全连接层,输出维度为1,使用 sigmoid 激活函数,通常用于二分类问题。

  3. 模型编译:

    model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
    

    编译模型,使用二元交叉熵作为损失函数,rmsprop 作为优化器,同时监控准确率。

  4. 模型摘要输出:

    print(model.summary())
    

    打印模型的摘要,显示每一层的参数数量等信息。

  5. 模型训练:

    model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=5, batch_size=100)
    

    使用训练数据进行模型训练,指定验证数据集、训练轮数(epochs)、批量大小(batch_size)等参数。

  6. 模型评估:

    scores = model.evaluate(x_test, y_test)
    

    使用测试数据评估模型性能,并将结果保存在 scores 中。这个例子中使用了二分类任务,因此评估结果中会包括损失值和准确率等信息。

相关文章:

循环神经网络训练情感分析

文章目录 1 循环神经网络训练情感分析2 完整代码3 代码详解 1 循环神经网络训练情感分析 下面介绍如何使用长短记忆模型(LSTM)处理情感分类LSTM模型是循环神经网络的一种,按照时间顺序,把信息进行有效的整合,有的信息…...

如何绕过某讯手游保护系统并从内存中获取Unity3D引擎的Dll文件

​ 某讯的手游保护系统用的都是一套,在其官宣的手游加固功能中有一项宣传是对比较热门的Unity3d引擎的手游保护方案,其中对Dll文件的保护介绍如下, “Dll加固混淆针对Unity游戏,对Dll模块的变量名、函数名、类名进行加密混淆处理&…...

【C/C++笔试练习】公有派生、构造函数内不执行多态、抽象类和纯虚函数、多态中的缺省值、虚函数的描述、纯虚函数的声明、查找输入整数二进制中1的个数、手套

文章目录 C/C笔试练习选择部分(1)公有派生(2)构造函数内不执行多态(3)抽象类和纯虚函数(4)多态中的缺省值(5)程序分析(6)重载和隐藏&a…...

Linux shell中的函数定义、传参和调用

Linux shell中的函数定义、传参和调用: 函数定义语法: [ function ] functionName [()] { } 示例: #!/bin/bash# get limit if [ $# -eq 1 ] && [ $1 -gt 0 ]; thenlimit$1echo -e "\nINFO: input limit is $limit" e…...

YoloV8改进策略:基于RevCol,可逆的柱状神经网络的完美迁移,YoloV8的上分利器

文章目录 摘要论文:《RevCol:可逆的柱状神经网络》1、简介2、方法2.1、Multi-LeVEl ReVERsible Unit2.2、可逆列架构2.2.1、MACRo设计2.2.2、MicRo 设计2.3、中间监督3、实验部分3.1、图像分类3.2、目标检测3.3、语义分割3.4、与SOTA基础模型的系统级比较3.5、更多分析实验&l…...

九章量子计算机:引领量子计算的新篇章

九章量子计算机:引领量子计算的新篇章 一、引言 随着科技的飞速发展,量子计算已成为全球科研领域的前沿议题。九章量子计算机作为中国自主研发的量子计算机,具有划时代的意义。本文将深入探讨九章量子计算机的原理、技术特点、应用前景等方面,带领读者领略量子计算的魅力…...

什么是vue的计算属性

Vue的计算属性是一种特殊的属性,它的值是通过对其他属性进行计算得到的。计算属性可以方便地对模型中的数据进行处理和转换,同时还具有缓存机制,只有在依赖的数据发生变化时才会重新计算值。这使得计算属性更加高效,并且可以减少重…...

Linux中文件的打包压缩、解压,下载到本地——zip,tar指令等

目录 1 .zip后缀名: 1.1 zip指令 1.2 unzip指令 2 .tar后缀名 3. sz 指令 4. rz 指令 5. scp指令 1 .zip后缀名: 1.1 zip指令 语法:zip [namefile.zip] [namefile]... 功能:将目录或者文件压缩成zip格式 常用选项&#xff1a…...

C语言——深入理解指针(4)

目录 1.回调函数 2. qsort 函数的使用 2.1 排序整型数据 2.2 排序结构体数据 3. qsort 函数的模拟实现 1.回调函数 回调函数就是通过一个函数指针调用的函数。 你把函数的地址作为参数传递给另一个函数,当这个指针被用来调用其所指向的函数时,被调…...

Linux基础命令(超全面,建议收藏!)

一、Linux的目录结构 /,根目录是最顶级的目录了 Linux只有一个顶级目录:/ 路径描述的层次关系同样使用/来表示 /home/itheima/a.txt,表示根目录下的home文件夹内有itheima文件夹,内有a.txt 二、Linux命令基础格式 无论是什么…...

LeetCode刷题---合并两个有序链表

个人主页:元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏:http://t.csdnimg.cn/ZxuNL http://t.csdnimg.cn/c9twt 前言:这个专栏主要讲述递归递归、搜索与回溯算法,所以下面题目主要也是这些算法做的 我讲述…...

SQL Server 2008 使用concat报错

SQL Server 2008 使用concat报错 在 SQL Server中,CONCAT 函数是从 SQL Server 2012 版本开始引入的,所以在 SQL Server 2008 中使用 CONCAT 函数会导致错误。 如果你想要连接字符串,有几种替代方法可以考虑: 使用 运算符&…...

视频后期效果制作工具Mocha Pro 2022 Plugins mac中文版软件介绍

Mocha Pro 2022 mac是一款专业的三维摄像机反求摩卡跟踪插件,同时也是一款视频后期效果制作工具,Mocha Pro 2022下载能够给数字媒体艺术家提供强大的、直观的和创新的追踪解决方案用简化的界面、加速的工作流程以及轻松追踪和操作镜头的强大性&#xff0…...

人工智能时代:AIGC的横空出世

🌈个人主页:聆风吟 🔥系列专栏:数据结构、网络奇遇记 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. 什么是AIGC?二. AIGC的主要特征2.1 文本生成2.2 图像生成2.3 语音生成2.4 视…...

基于ChatGPT等大模型快速爬虫提取网页内容

本文将介绍一种基于ChatGPT等大模型快速爬虫提取网页内容的方法。传统的爬虫方法需要花费较大精力分析页面的html元素,而这种方法只需要两步就可以完成。下面将从使用步骤、方法扩展和示例程序三部分进行介绍。RdFast智能创作机器人小程序预计本周2023-11-30之前集成…...

JavaScript WebAPI(三)(详解)

这次介绍一下webAPI中的一些知识: 回调函数 回调函数是指 如果将函数A做为参数传递给函数B时,我们称函数A为回调函数 例如: // 立即执行函数中传递的函数是一个回调函数 (function(){ console.log("我是回调函数") })(); // …...

LeetCode哈希表:最长连续序列

LeetCode哈希表:最长连续序列 题目描述 给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 1: 输入&…...

SpringBoot+redis实现接口防刷

写一个RedisService,实现获取Redis 的set、get、incr(相当于计数器) 写inferface注解类 做一个拦截器,因为要先于控制器判断 将拦截器注入Springboot 文章目录 目录 文章目录 前言 一、引入依赖 二、使用步骤 2.1 RedisServic…...

5G承载网和大客户承载的演进

文章目录 移动4/5G承载网联通和电信4/5G承载网M-OTN(Metro-optimized OTN),城域型光传送网PeOTN(packet enhanced optical transport network),分组增强型OTN板卡增强型PeOTN集中交叉型PeOTN VC-OTN&#x…...

智慧工地一体化解决方案(里程碑管理)源码

智慧工地为管理人员提供及时、高效、优质的远程管理服务,提升安全管理水平,确保施工安全提高施工质量。实现对人、机、料、法、环的全方位实时监控,变被动“监督”为主动“监控”。 一、建设背景 施工现场有数量多、分布广,总部统…...

熬夜会秃头——beta冲刺Day2

这个作业属于哪个课程2301-计算机学院-软件工程社区-CSDN社区云这个作业要求在哪里团队作业—beta冲刺事后诸葛亮-CSDN社区这个作业的目标记录beta冲刺Day2团队名称熬夜会秃头团队置顶集合随笔链接熬夜会秃头——Beta冲刺置顶随笔-CSDN社区 目录 一、团队成员会议总结 1、成员…...

【linux】信号——信号保存+信号处理

信号保存信号处理 1.信号保存1.1信号其他相关概念1.2信号在内核中的表示 2.信号处理2.1信号的捕捉流程2.2sigset_t2.3信号集操作函数2.4实操2.5捕捉信号的方法 3.可重入函数4.volatile5.SIGCHLD信号 自我名言:只有努力,才能追逐梦想,只有努力…...

雷军:我的程序人生路

今天有朋友发给我一篇我在20年前在BBS上写的帖子。那还是1996年,我们通过电话线拨号连接到西点BBS上飙帖子玩的年代。那是一个互联网混沌初开的年代,那是一个BBS和Email几乎主宰了全部互联网的年代,那是一个青春的理想和热血沸腾的年代。 我…...

Linux 磁盘分区处理

最近实施过程中遇到客户提供给我们的服务器操作系统和Docke容器环境都已经安装完成,但磁盘的分区没有进行整理好。磁盘总共270G,系统安装分配了60G,剩余未创建分配需要处理。由于分区情况每家不一样,但大致流程都是相同的&#xf…...

利用ogr2ogr从PostGIS中导出/导入Tab/Dxf/Geojson等格式数据

ogr2ogr Demo Command 先查看下当前gdal支持的全部格式,部分gdal版本可能不支持PostGIS。 如出现PostgreSQL表名支持。 #全部支持的格式 ogrinfo --formats | sort #AVCBin -vector- (rov): Arc/Info Binary Coverage #AVCE00 -vector- (rov): Arc/Info E00 (ASC…...

【深度优先】LeetCode1932:合并多棵二叉搜索树

作者推荐 动态规划LeetCode2552:优化了6版的1324模式 题目 给你 n 个 二叉搜索树的根节点 ,存储在数组 trees 中(下标从 0 开始),对应 n 棵不同的二叉搜索树。trees 中的每棵二叉搜索树 最多有 3 个节点 &#xff0…...

monorepo多项目管理主流实现方式:1.learn + yarn/npm workspace 2.pnpm

npm域级包 随着npm包越来越多,而且包名也只能是唯一的,如果一个名字被别人占了,那你就不能再使用这个名字;假设我想要开发一个utils包,但是张三已经发布了一个utils包,那我的包名就不能叫utils了&#xff…...

【斗罗二】暗杀霍雨浩行动,马小桃霸气回击,江楠楠首秀武魂兔兔

Hello,小伙伴们,我是拾荒君。 《斗罗大陆Ⅱ绝世唐门》第25集更新了!和小伙伴们一样,一更新,拾荒君就急不可待地观看这一集。故事情节高潮迭起,尤其是霍雨浩与王冬面对六名杀手的惊险场景,真是让人心跳加速…...

[ 蓝桥杯Web真题 ]-年度明星项目

目录 引入 介绍 准备 目标 效果 规定 思路 知识补充 解答参考 引入 hello,大家好!我注意到了之前发的一篇蓝桥杯Web应用开发的文章是关注度最高的,可能大部分关注我的小伙伴对蓝桥杯Web应用开发比较感兴趣,或者想要参加…...

Maven终端打包时报Unknown lifecycle phase “.test.skip=true“

错误实例代码 mvn clean package -Dmaven.test.skiptrue 再windows的cmd窗口进行项目打包,需要将参数用英文符号包裹起来“ ” 【正确的实例】:mvn clean package ’-Dmaven.test.skiptrue‘ PS D:\BaiduNetdiskDownload\qian\Springboot-Vue\bi…...