当前位置: 首页 > news >正文

LangChain 19 Agents Reason+Action自定义agent处理OpenAI的计算缺陷

LangChain系列文章

  1. LangChain 实现给动物取名字,
  2. LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字
  3. LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄
  4. LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索Indexes for information retrieve
  5. LangChain 5易速鲜花内部问答系统
  6. LangChain 6根据图片生成推广文案HuggingFace中的image-caption模型
  7. LangChain 7 文本模型TextLangChain和聊天模型ChatLangChain
  8. LangChain 8 模型Model I/O:输入提示、调用模型、解析输出
  9. LangChain 9 模型Model I/O 聊天提示词ChatPromptTemplate, 少量样本提示词FewShotPrompt
  10. LangChain 10思维链Chain of Thought一步一步的思考 think step by step
  11. LangChain 11实现思维树Implementing the Tree of Thoughts in LangChain’s Chain
  12. LangChain 12调用模型HuggingFace中的Llama2和Google Flan t5
  13. LangChain 13输出解析Output Parsers 自动修复解析器
  14. LangChain 14 SequencialChain链接不同的组件
  15. LangChain 15根据问题自动路由Router Chain确定用户的意图
  16. LangChain 16 通过Memory记住历史对话的内容
  17. LangChain 17 LangSmith调试、测试、评估和监视基于任何LLM框架构建的链和智能代理
  18. LangChain 18 LangSmith监控评估Agent并创建对应的数据库
    在这里插入图片描述

在这里插入图片描述

1. Agents 代理

Agents的核心理念是利用语言模型选择一系列要采取的行动。在Chains中,一系列行动是硬编码的(在代码中)。在Agents中,语言模型被用作推理引擎,以确定要采取哪些行动以及顺序。

概念 这里有几个关键组成部分:

1.1 Agent

这是负责决定下一步该采取什么步骤的链条。这由语言模型和提示驱动。这个链条的输入包括:

  1. 工具:可用工具的描述
  2. 用户输入:高层次目标
  3. 中间步骤:为了实现用户输入而先前执行的任何(动作,工具输出)对

输出是下一步要采取的行动或发送给用户的最终响应(代理动作或代理完成)。动作指定一个工具和该工具的输入。

不同的代理有不同的推理提示风格,不同的编码输入方式和不同的解析输出方式。有关内置代理的完整列表,请参见代理类型。您还可以轻松构建自定义代理,我们将在下面的入门部分中展示如何操作。

1.2 工具

工具是代理可以调用的函数。围绕工具有两个重要的设计考虑:

  1. 为代理提供访问正确工具的权限
  2. 以对代理最有帮助的方式描述工具

如果没有同时考虑这两个方面,你将无法构建一个可工作的代理。如果你不给代理访问正确的工具集,它将永远无法完成你给它的目标。如果你没有很好地描述工具,代理将不知道如何正确使用它们。

LangChain 提供了广泛的内置工具集,但也使定义自己的工具(包括自定义描述)变得容易。有关内置工具的完整列表,请参见工具集成部分。

1.3 工具包

对于许多常见任务,代理将需要一组相关工具。为此,LangChain提供了工具包的概念 - 大约3-5个工具组成,用于实现特定目标。例如,GitHub工具包中有一个用于搜索GitHub问题的工具,一个用于读取文件的工具,一个用于评论的工具等等。

LangChain提供了广泛的工具包供您使用。有关内置工具包的完整列表,请参阅工具包集成部分。

1.4 AgentExecutor

代理执行器是代理的运行时。这实际上是调用代理,执行它选择的动作,将动作输出传递回代理,并重复。在伪代码中,大致如下:

next_action = agent.get_action(...)
while next_action != AgentFinish:observation = run(next_action)next_action = agent.get_action(..., next_action, observation)
return next_action

虽然这可能看起来很简单,但这个运行时为您处理了几个复杂情况,包括:

  1. 处理代理选择不存在的工具的情况
  2. 处理工具出错的情况
  3. 处理代理产生的无法解析为工具调用的输出的情况
  4. 在所有级别(代理决策,工具调用)记录和观察到标准输出和/或LangSmith。

1.5 其他类型的代理运行时

AgentExecutor类是LangChain支持的主要代理运行时。但是,我们还支持其他更实验性的运行时。这些包括:

  • 计划并执行代理
  • Baby AGI
  • Auto GPT

您也可以始终创建自己的自定义执行逻辑,我们将在下面展示如何做到这一点。

2. 开始代码实现​

为了更好地理解代理框架,让我们使用LangChain表达语言(LCEL)从头开始构建一个代理。我们需要构建代理本身,定义自定义工具,并在自定义循环中运行代理和工具。最后,我们将展示如何使用标准的LangChain AgentExecutor来使执行更容易。

一些重要的术语(和模式)需要知道:

  1. AgentAction:这是一个表示代理应该采取的行动的数据类。它有一个工具属性(这是应调用的工具的名称)和一个tool_input属性(该工具的输入)
  2. AgentFinish:这是一个表示代理已经完成并应该返回给用户的数据类。它有一个return_values参数,是一个要返回的字典。它通常只有一个键 - 输出 - 是一个字符串,因此通常只返回这个键。
  3. intermediate_steps:这些代表传递的先前代理操作和相应的输出。这些对于将来的迭代非常重要,这样代理就知道它已经做了什么工作。这被定义为List[Tuple[AgentAction, Any]]。请注意,observation目前被保留为Any类型,以便最大程度地灵活。实际上,这通常是一个字符串。

2.1 设置:LangSmith

根据定义,代理在返回用户可见的输出之前会采取一系列自主确定的、依赖输入的步骤。这使得调试这些系统特别棘手,观察特别重要。LangSmith在这种情况下特别有用。

在使用LangChain构建时,任何使用LCEL构建的内置代理或自定义代理都将自动在LangSmith中被追踪。如果我们使用AgentExecutor,不仅会得到代理规划步骤的完整追踪,还会得到工具的输入和输出的追踪。

要设置LangSmith,我们只需要设置以下环境变量:

export LANGCHAIN_TRACING_V2="true"
export LANGCHAIN_API_KEY="<your-api-key>"

2.2 定义代理

我们首先需要创建我们的代理。这是负责决定下一步采取什么行动的链条。

在这个例子中,我们将使用OpenAI函数调用来创建这个代理。这通常是创建代理的最可靠方式。

在本指南中,我们将构建一个具有自定义工具访问权限的自定义代理。我们选择这个例子是因为在大多数实际用例中,您将需要自定义代理或工具。我们将创建一个简单的工具,用于计算单词的长度。这很有用,因为由于标记化,LLMs实际上可能会搞砸这个。我们将首先创建它而不带有记忆,但然后我们将展示如何添加记忆。记忆是为了启用对话而必需的。

首先,让我们加载我们将用来控制代理的语言模型。

from langchain.chat_models import ChatOpenAIllm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)

我们可以看到它在尝试计算字符串"educa"中的字母时遇到了困难。

llm.invoke("how many letters in the word educa?")
    AIMessage(content='There are 6 letters in the word "educa".')

接下来,让我们定义一些要使用的工具。让我们编写一个非常简单的Python函数来计算传入的单词的长度。

from langchain.agents import tool@tool
def get_word_length(word: str) -> int:"""Returns the length of a word."""return len(word)tools = [get_word_length]

现在让我们创建提示。因为OpenAI函数调用是为工具使用而优化的,我们几乎不需要任何关于如何推理或如何输出格式的指令。我们只需要两个输入变量:输入和agent_scratchpad。输入应该是包含用户目标的字符串。agent_scratchpad应该是包含先前代理工具调用和相应工具输出的消息序列。

from langchain.prompts import ChatPromptTemplate, MessagesPlaceholderprompt = ChatPromptTemplate.from_messages([("system","You are very powerful assistant, but bad at calculating lengths of words.",),("user", "{input}"),MessagesPlaceholder(variable_name="agent_scratchpad"),]
)

代理如何知道它可以使用哪些工具?在这种情况下,我们依赖于OpenAI调用LLMs的功能,它们将函数作为单独的参数,并经过专门训练,知道何时调用这些函数。

要将我们的工具传递给代理,我们只需要将它们格式化为OpenAI函数格式,并将它们传递给我们的模型。(通过绑定函数,我们确保它们在每次调用模型时被传递。)

from langchain.tools.render import format_tool_to_openai_functionllm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])

将这些部分组合在一起,我们现在可以创建代理。我们将导入最后两个实用程序函数:一个用于格式化中间步骤(代理动作、工具输出对)以将其转换为可以发送到模型的输入消息的组件,以及一个用于将输出消息转换为代理动作/代理完成的组件。

from langchain.agents.format_scratchpad import format_to_openai_function_messages
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParseragent = ({"input": lambda x: x["input"],"agent_scratchpad": lambda x: format_to_openai_function_messages(x["intermediate_steps"]),}| prompt| llm_with_tools| OpenAIFunctionsAgentOutputParser()
)

现在我们有了我们的代理,让我们来玩一下吧!让我们传递一个简单的问题和空的中间步骤,看看它返回什么:

agent.invoke({"input": "how many letters in the word educa?", "intermediate_steps": []})
    AgentActionMessageLog(tool='get_word_length', tool_input={'word': 'educa'}, log="\nInvoking: `get_word_length` with `{'word': 'educa'}`\n\n\n", message_log=[AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{\n  "word": "educa"\n}', 'name': 'get_word_length'}})])

我们可以看到它响应一个AgentAction以采取行动(实际上是AgentActionMessageLog - AgentAction的子类,还跟踪完整的消息日志)。

如果我们设置了LangSmith,我们将看到一个跟踪,让我们检查每个步骤中的输入和输出的序列。https://smith.langchain.com/public/04110122-01a8-413c-8cd0-b4df6eefa4b7/r
在这里插入图片描述

2.3 定义运行时

所以这只是第一步 - 现在我们需要为此编写一个运行时。最简单的方法就是不断循环调用代理,然后执行动作,直到返回AgentFinish为止。让我们在下面编写代码:

from langchain.schema.agent import AgentFinishuser_input = "how many letters in the word educa?"
intermediate_steps = []
while True:output = agent.invoke({"input": user_input,"intermediate_steps": intermediate_steps,})if isinstance(output, AgentFinish):final_result = output.return_values["output"]breakelse:print(f"TOOL NAME: {output.tool}")print(f"TOOL INPUT: {output.tool_input}")tool = {"get_word_length": get_word_length}[output.tool]observation = tool.run(output.tool_input)intermediate_steps.append((output, observation))
print(final_result)
    TOOL NAME: get_word_lengthTOOL INPUT: {'word': 'educa'}There are 5 letters in the word "educa".

Woo! It’s working.

整合代码实现

# 导入与 OpenAI 语言模型交互的模块。
from langchain.llms import OpenAI  # 导入用于创建和管理提示模板的模块。
from langchain.prompts import PromptTemplate  # 导入用于构建基于大型语言模型的处理链的模块。
from langchain.chains import LLMChain  # 导入从 .env 文件加载环境变量的库。
from dotenv import load_dotenv  # 导入创建和管理 OpenAI 聊天模型实例的类。
from langchain.chat_models import ChatOpenAI# 加载 .env 文件中的环境变量。
load_dotenv()  # 设置环境变量,包括项目 ID 和 Langchain API 的相关设置。
import os
from uuid import uuid4
unique_id = uuid4().hex[0:8]
os.environ["LANGCHAIN_PROJECT"] = f"Tracing word length - {unique_id}"# 初始化 LangSmith 客户端。
from langsmith import Client
client = Client()# 创建 ChatOpenAI 实例。
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, verbose=True)# 定义一个自定义工具,用于获取单词的长度。
from langchain.agents import tool@tool
def get_word_length(word: str) -> int:"""Returns the length of a word."""return len(word)tools = [get_word_length]# 创建聊天提示模板。
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholderprompt = ChatPromptTemplate.from_messages([("system", "You are very powerful assistant, but bad at calculating lengths of words."),("user", "{input}"),MessagesPlaceholder(variable_name="agent_scratchpad"),]
)# 将 ChatOpenAI 实例与工具绑定。
from langchain.tools.render import format_tool_to_openai_functionllm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])# 定义代理。
from langchain.agents.format_scratchpad import format_to_openai_function_messages
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParseragent = ({"input": lambda x: x["input"],"agent_scratchpad": lambda x: format_to_openai_function_messages(x["intermediate_steps"]),}| prompt| llm_with_tools| OpenAIFunctionsAgentOutputParser()
)# 处理用户输入,使用代理执行循环,直到获取最终结果。
from langchain.schema.agent import AgentFinishuser_input = "how many letters in the word educa?"
intermediate_steps = []
while True:output = agent.invoke({"input": user_input,"intermediate_steps": intermediate_steps,})if isinstance(output, AgentFinish):final_result = output.return_values["output"]breakelse:print(f"TOOL NAME: {output.tool}")print(f"TOOL INPUT: {output.tool_input}")tool = {"get_word_length": get_word_length}[output.tool]observation = tool.run(output.tool_input)intermediate_steps.append((output, observation))
print(final_result)

输出结果

(develop)⚡ % python Agents/chat_agents_word_length.py                    ~/Workspace/LLM/langchain-llm-app
TOOL NAME: get_word_length
TOOL INPUT: {'word': 'educa'}
There are 5 letters in the word "educa".

代码

https://github.com/zgpeace/pets-name-langchain/tree/develop

参考

https://python.langchain.com/docs/modules/agents/

相关文章:

LangChain 19 Agents Reason+Action自定义agent处理OpenAI的计算缺陷

LangChain系列文章 LangChain 实现给动物取名字&#xff0c;LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain 4用向量数据库Faiss存储&#xff0c;读取YouTube的视频文本搜索I…...

12.整数转罗马数字

C不能像Python那样使用c*num的形式&#xff0c;重复字符&#xff0c;老老实实减吧。 class Solution { public:string intToRoman(int num) {string ans "";int res num;while (res ! 0) {if (res > 1000) {ans M;res - 1000;} else if (res > 900) {ans …...

免费AI洗稿软件【2023最新】

很多时候我们需要通过文字来表达观点、推广产品或服务。然而&#xff0c;长时间的文稿创作不仅费时费力&#xff0c;还容易陷入表达瓶颈。许多写手和从业者纷纷寻找一款方便、高效的AI洗稿工具。 文心一言洗稿软件。这款软件以其独特的文风生成和洗稿功能而备受瞩目。用户只需…...

PTA:平方回文数

题干 在数学里面&#xff0c;有一种数字正着读和反着读结果都一样&#xff0c;我们把这种数称为回文数。如果一个回文数&#xff0c;它同时还是某一个数的平方&#xff0c;这样的数字叫做平方回数。 本题要求输出小于正整数N的所有平方回数。 &#xff08;注&#xff1a;个位数…...

从“AI证件照”到“AI译制片”,爆款AIGC应用的商业化迷思

让郭德纲飙英文、让霉霉说中文的翻译视频生成工具HeyGen和掀起AI证件照热潮的“妙鸭相机”一样&#xff0c;在一阵疯狂刷屏之后&#xff0c;又迅速在各大群里销声匿迹了。 十月份&#xff0c;由HeyGen制作的各种明星跨语言翻译视频&#xff0c;在全网疯传&#xff0c;大家震撼于…...

JAVA代码优化:Easy Excel(操作Excel文件的开源工具)

Easy Excel官网&#xff1a; EasyExcel官方文档 - 基于Java的Excel处理工具 | Easy Excel (alibaba.com) https://easyexcel.opensource.alibaba.com/ Easy Excel的特点和优势&#xff1a; 简单易用&#xff1a;Easy Excel提供了简洁的API&#xff0c;使用起来非常方便。开发…...

Linux Python ping3库使用教程(ping3命令、ping命令)

文章目录 Linux Python ping3库使用教程1. 环境准备2. ping3库安装3. ping3基本使用4. ping3进阶使用5. 常见问题解答5.1 ping3库可以在Windows系统中使用吗&#xff1f;5.2 如何处理ping操作超时的情况&#xff1f;5.3 ping3库支持IPv6吗&#xff1f; Linux Python ping3库使用…...

分享一些基于php商城案例

案例1&#xff1a; ​​​​​​http://www.9520.xin/ 案例2&#xff1a; http://ptll.hasbuy.com/ 案例3&#xff1a; http://likeshop.9520.xin/mobile 案例4&#xff1a; http://www.hasbuy.com/...

SpringSecurity 三更草堂 学习笔记

SpringSecurity从入门到精通 0. 简介 Spring Security 是 Spring 家族中的一个安全管理框架。相比与另外一个安全框架Shiro&#xff0c;它提供了更丰富的功能&#xff0c;社区资源也比Shiro丰富。 一般来说中大型的项目都是使用SpringSecurity 来做安全框架。小项目有Shiro的…...

基于Java SSM仓库管理系统

企业仓库有多个库房&#xff0c;用来分别存放生产需要的各种零件&#xff0c;仓库管理系统对此进行科学的管理。仓库管理系统管理的对象及操作如下&#xff1a; 管理员信息&#xff1a;工号、姓名、性别、年龄、电话、工资等。 库房信息&#xff1a;编号、地址、面积等。 零件信…...

基于Spark对消费者行为数据进行数据分析开发案例

原创/朱季谦 本文适合入门Spark RDD的计算处理。 在日常工作当中&#xff0c;经常遇到基于Spark去读取存储在HDFS中的批量文件数据进行统计分析的案例&#xff0c;这些文件一般以csv或者txt文件格式存在。例如&#xff0c;存在这样一份消费者行为数据&#xff0c;字段包括消费…...

Docker镜像制作与推送

目录 Docker镜像制作 搭建私服 将本地镜像推送到私有库 Docker镜像制作 以创建一个新ubuntu镜像&#xff0c;并安装vim命令示例 运行一个ubuntu镜像&#xff0c;发现在镜像里面无法使用vim命令&#xff0c;因为该ubuntu镜像只包括了其最基本的内核命令 [rootlocalhost ~]…...

Pandas时序数据分析实践—基础(1)

目录 1. Pandas基本结构2. Pandas数据类型2.1. 类型概述2.1.1. 整数类型&#xff08;int&#xff09;&#xff1a;2.1.2. 浮点数类型&#xff08;float&#xff09;&#xff1a;2.1.3. 布尔类型&#xff08;bool&#xff09;&#xff1a;2.1.4. 字符串类型&#xff08;object&a…...

5.C转python

新始: 13.列表可被改变(数据),元组不可被改变(数据),二者皆与C中的数组的大致相同 14.创建列表方法: 1.一个[ ]就是一个空的列表 2.使用list函数来创建列表 如: 15.可以在[ ]内部指定列表的初始值,打印方法: 如: 16.在python中,在同一个列表中,可以放不同类型的变量(也可…...

输出SearchFacesResponse对象的JSON格式字符串回包乱码解决方案

输出SearchFacesResponse对象的JSON格式字符串设置响应内容类型为"application/json;charsetutf-8"获取响应的字符输出流将SearchFacesResponse对象转化为JSON字符串并输出。 代码片段 System.out.println(SearchFacesResponse.toJsonString(resp)); response.setC…...

P7 链表 链表头前方插入新节点

目录 前言 01 链表头插入数据 示例代码 02 指定节点前方插入新节点 测试代码 前言 &#x1f3ac; 个人主页&#xff1a;ChenPi &#x1f43b;推荐专栏1: 《C》✨✨✨ &#x1f525; 推荐专栏2: 《 Linux C应用编程&#xff08;概念类&#xff09;_ChenPi的博客-CSDN博客》✨…...

SCAU:主对角线上的元素之和

主对角线上的元素之和 Time Limit:1000MS Memory Limit:65535K 题型: 编程题 语言: G;GCC 描述 输入一个3行4列的整数矩阵&#xff0c;计算并输出主对角线上的元素之和输入格式 3行4列整数矩阵输出格式 主对角线上的元素之和输入样例 1 2 3 4 5 6 7 8 9 10 11 12输出…...

c语言——简单客户端demo

以下是一个简单的C语言客户端示例&#xff0c;用于连接到服务器并发送和接收数据&#xff1a; #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/socket.h> #include <arpa/inet.h> #include <unistd.h…...

日志检索场景ES->Doris迁移最佳实践:函数篇

函数列表 函数&#xff1a;term函数功能说明&#xff1a;查询某个字段里含有某个关键词的文档参数说明&#xff1a;返回值说明&#xff1a;ES使用示例&#xff1a; {"query": {"term": {"title": "blog"}} }Doris使用示例&#xf…...

【高效开发工具系列】jackson入门使用

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

深入理解网络非阻塞 I/O:NIO

&#x1f52d; 嗨&#xff0c;您好 &#x1f44b; 我是 vnjohn&#xff0c;在互联网企业担任 Java 开发&#xff0c;CSDN 优质创作者 &#x1f4d6; 推荐专栏&#xff1a;Spring、MySQL、Nacos、Java&#xff0c;后续其他专栏会持续优化更新迭代 &#x1f332;文章所在专栏&…...

Hdoop学习笔记(HDP)-Part.07 安装MySQL

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …...

[数据结构]HashSet与LinkedHashSet的底层原理学习心得

我们区分list和set集合的标准是三个&#xff1a;有无顺序&#xff0c;可否重复&#xff0c;有无索引。 list的答案是&#xff1a;有顺序&#xff0c;可重复&#xff0c;有索引。这也就是ArrayList和LinkedList的共性 set的答案是&#xff1a;顺序内部再区分,不可以重复&#xf…...

使用unity开发Pico程序,场景中锯齿问题

1、问题 使用unity【非HDR】开发Pico程序&#xff0c;场景中锯齿问题&#xff0c;设置了unity的抗锯齿和渲染方式,及悬挂抗锯齿的脚本&#xff0c;都不能很好的解决项目中图片、文字的锯齿问题&#xff0c;通过摸索找到了妥善的方法 1、修改项目中图片的 GenerateMIpMaps 为勾…...

Spring | Spring的基本应用

目录: 1.什么是Spring&#xff1f;2.Spring框架的优点3.Spring的体系结构 (重点★★★) :3.1 Core Container (核心容器) ★★★Beans模块 (★★★) : BeanFactoryCore核心模块 (★★★) : IOCContext上下文模块 (★★★) : ApplicationContextContext-support模块 (★★★)SpE…...

项目开发维护技术文档(梳理总结中)

目录 项目名称——惠誉灵境 一、项目背景 二、架构设计 1.技术栈 2.架构图 3.代码结构 三、模块划分 1.平台首页 2.登录模块 3.系统模块 &#xff08;1&#xff09;系统首页 &#xff08;2&#xff09;组织架构 &#xff08;3&#xff09;权限管控 ①角色管理 &#xff08;4&am…...

【接口测试】Apifox实用技巧干货分享

前言 不知道有多少人和我有着这样相似的经历&#xff1a;从写程序只要不报错就不测试&#x1f60a;&#xff0c;到写了程序若是有bug就debug甚至写单元测试&#xff0c;然后到了真实开发场景&#xff0c;大哥和你说&#xff0c;你负责的功能模块的所有接口写完要测试一遍无误在…...

车联网架构设计(一)_消息平台的搭建

车联网是物联网的一个主要应用方向&#xff0c;车辆通过连接车联网平台&#xff0c;实时进行消息的交互&#xff0c;平台可以提供车辆远程控制&#xff0c;故障检测&#xff0c;车路协同等各方面的功能。 我在车联网行业从事了很长时间的技术工作&#xff0c;参与了整个车联网…...

(蓝桥杯)1125 第 4 场算法双周赛题解+AC代码(c++/java)

题目一&#xff1a;验题人的生日【算法赛】 验题人的生日【算法赛】 - 蓝桥云课 (lanqiao.cn) 思路&#xff1a; 1.又是偶数&#xff0c;又是质数&#xff0c;那么只有2喽 AC_Code:C #include <iostream> using namespace std; int main() {cout<<2;return 0; …...

也可Adobe Animate

Animate CC 由原Adobe Flash Professional CC 更名得来&#xff0c;2015年12月2日&#xff1a;Adobe 宣布Flash Professional更名为Animate CC&#xff0c;在支持Flash SWF文件的基础上&#xff0c;加入了对HTML5的支持。并在2016年1月份发布新版本的时候&#xff0c;正式更名为…...