《洛谷深入浅出进阶篇》模意义下的乘法逆元+洛谷P3811
什么是乘法逆元?
算数意义上的乘法逆元指的是倒数,即:a*(1/a)=1
所以 1/a 是 a在算数意义下的乘法逆元,或者可以说二者互为逆元。
这有什么用呢?
除以a就等于乘上a的乘法逆元,乘以a等于除以a的乘法逆元。
那么我们回到我们要介绍的新的乘法逆元:模意义上的乘法逆元。(使用条件,当一个正整数做分母的时候)
例如我们要求(x+y)*(x-y)/2 mod p
很显然,对于分子,我们可以直接用模的性质
(x+y)*(x-y)modp = 【(x+y)%p *(x-y)%p】%p
但是,这样的方法只对加减乘有效。
除法的话,由于整除向下取整的原因,我们无法直接使用。这时候就要用到逆元,来代替除法,因为除以一个数取模,等于乘上它在模意义上的逆元,后取模。
ok,那么什么是模意义上的乘法逆元呢?
给出定义: a*x = 1(mod)p,也就是a*x对p取模为1的时候,x就是a 的逆元,所以,当除以a的时候就相当于是乘上a的逆元x。(注意,模只对整数时有意义的,所以我们的变量都应该是整数)
那么我们知道了模意义上的乘法逆元,应该怎么求它的乘法逆元呢?
就可以用到三种方法:扩展欧几里得算法,费马小定理,线性递推。
扩展欧几里得算法:
a*x=1 (mod)p
这个式子可以展开写成:(扩展欧几里得相关文章连接:《洛谷深入浅出进阶篇》 欧几里得算法,裴蜀定理,拓展欧几里得算法————洛谷P1516 青蛙的约会-CSDN博客https://blog.csdn.net/louisdlee/article/details/134751119?spm=1001.2014.3001.5502)
a*x+p*y=1
也就是求x,y的不定方程。
我们由裴蜀定理可知:这个方程只有gcd(a,p)=1的时候才有解,所以,gcd=1是求逆元的前提条件。然后我们直接套exgcd(a,p,x,y)即可
虽然求出来的是a的一个逆元,但是我们由拓展欧几里得可以求出通式,x=x1+k*lcm(a,p)/a (k可以取任意整数)只要不断+模数p就可以求出最小正整数解
2,费马小定理:如果p是质数,且gcd(a,p)=1,a^(p-2)是a的一个乘法逆元。
那么如何求a^(p-2)?
我们可以用到快速幂的方法,s=1,t=p-2 y=a
while(t!=0){
if(p&1==1)s=s*y
y*=y;
t/=2;
}
线性递推求逆元
假如给你1~n个数,让你求所有整数在模p意义下的乘法逆元。你应该怎么办?(n<=1e6)
如果你每次都用exgcd或者费马小定理+快速幂这题是肯定是会超时的,所以我们只能用线性优化了。
只能使用递推的方式来解决这道题
那么我们必须找到递推的式子
假设 inv(i)是i在模意义下的逆元(记住板子即可)
设p=i*q+r,其中q=【p/i】(整除),r=p%i。
第一个式子:p=i*q+r
在模意义下可以得到这样的式子:
i*q+r == 0 (mod p)
变形为: i == -r/q (mod p)
等价于:i== -r * inv(q) (mod p)
两边取倒数:(整数的倒数来表示逆元函数)
1/i == -1/r * q
inv(i) == -inv(r)*q == -inv(r)*【p/i】;
因为 r=p%i,所以r是一定小于当前的i的,怎么求inv(r)
由于我们是递推求逆元,当求到i时,说明i-1,i-2,......1 都求出来了。
所以我们只要注意边界 inv(1) =1即可
但是还是有一个问题,就是,这样求出来的逆元,有些是负数的,如果我们要求逆元的最小正整数应该怎么办?
那也好办,不断在其后面加上p就可以了,当逆元大于0,退出循环。
上代码:
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<cctype>
#include<map>
#include<set>
#include<queue>
#include<numeric>
#include<iomanip>
using namespace std;
typedef long long LL;
const int N = 3e6 + 7;
LL inv[N];
int main()
{LL n,p;cin >> n>>p;inv[1] = 1;for (int i = 2; i <= n; i++) {LL q = p / i;LL r = p % i;inv[i] = (-q * inv[r]%p)%p;while(inv[i]<0)inv[i]+=p;}for (int i = 1; i <= n; i++)cout << inv[i] << '\n';
}
相关文章:

《洛谷深入浅出进阶篇》模意义下的乘法逆元+洛谷P3811
什么是乘法逆元? 算数意义上的乘法逆元指的是倒数,即:a*(1/a)1 所以 1/a 是 a在算数意义下的乘法逆元,或者可以说二者互为逆元。 这有什么用呢? 除以a就等于乘上a的乘法逆元,乘以…...

clickhouse -- clickhouse解析复杂JSON数组
举例 - 查数据 select _id,doctorId,patientId,diagnosisList from patient_disease final where diagnosisList is not null limit 3;- 解析数组 SELECT _id,doctorId,patientId,visitParamExtractRaw(diagnosisList,diagnosisName) FROM patient_disease final where _id …...
算法leetcode|91. 解码方法(rust重拳出击)
文章目录 91. 解码方法:样例 1:样例 2:样例 3:提示: 分析:题解:rust:go:c:python:java: 91. 解码方法: 一条包含字母 A-Z…...

zabbix配置snmp trap--使用snmptrapd和Bash接收器(缺zabbix_trap_handler.sh文中自取)--图文教程
1.前言 我的zabbix的版本是5.0版本,5.0的官方文档没有使用bash接收器的示例,6.0的官方文档有使用bash接收器的示例,但是,下载文件的链接失效?! 这里讲解zabbix-server端配置和zabbix web端配置 2.zabbix-…...

vue: 线上项目element-ui的icon偶尔乱码问题
线上环境偶尔会复现, 具体: 一般使用不会出现这个问题,因为一般引入的是element-ui的css文件,问题出在于为了主题色变化啊,需要用到scss变量引入了scss文件。 import “~element-ui/packages/theme-chalk/src/index”…...

fpga rom 初始化文件的一些心得
目录 可能遇到的问题 问题 解决方案 rom的初始化 用途 文件类型 如何生成初始化文件 示例 Altera Xilinx 可能遇到的问题 问题 altera FPGA的rom找不到初始化文件,编译过程会提示类似的问题 Error(127001): Cant find Memory Initialization File or He…...
从零构建属于自己的GPT系列3:模型训练2(训练函数解读、模型训练函数解读、代码逐行解读)
🚩🚩🚩Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1:文本数据预处理 从零构建属于自己的GPT系列2:语…...
Python词频统计(数据整理)
请编写程序,对一段英文文本,统计其中所有不同单词的个数,以及词频最大的前10%的单词。 输入格式: 输入给出一段非空文本,最后以符号#结尾。输入保证存在至少10个不同的单词。 输出格式: 在第一行中输出文本中所有不同单词的个数…...
基本面选股的方法
基本面选股是一种投资策略,主要关注公司的财务状况、盈利能力、行业地位等因素,以判断公司的价值并做出投资决策。以下是基本面选股的具体分析方法和重点: 财务状况分析: 利润表分析:关注公司的净利润、毛利率、营业…...

应用密码学期末复习(3)
目录 第三章 现代密码学应用案例 3.1安全电子邮件方案 3.1.1 PGP产生的背景 3.2 PGP提供了一个安全电子邮件解决方案 3.2.1 PGP加密流程 3.2.2 PGP解密流程 3.2.3 PGP整合了对称加密和公钥加密的方案 3.3 PGP数字签名和Hash函数 3.4 公钥分发与认证——去中心化模型 …...

PAD平板签约投屏-高端活动的选择
传统的现场纸质签约仪式除了缺乏仪式感之外还缺少互动性,如果要将签约的过程投放到大屏幕上更是需要额外的硬件设备成本。相比于传统的纸质签约仪式,平板现场电子签约的形式更加的新颖、更富有科技感、更具有仪式感。 平板签约投屏是应用于会议签字仪式的…...

分布式架构demo
1、外层创建pom 版本管理器 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.7.15</version><relativePath/> <!-- lookup parent from repository…...

TA-Lib学习研究笔记(二)——Overlap Studies上
TA-Lib学习研究笔记(二)——Overlap Studies 1. Overlap Studies 指标 [BBANDS, DEMA, EMA, HT_TRENDLINE, KAMA, MA, MAMA, MAVP, MIDPOINT, MIDPRICE, SAR, SAREXT, SMA, T3, TEMA, TRIMA, WMA]2.数据准备 get_data函数参数(代码&#x…...
牛客java基础考点1 标识符和变量
牛客java基础考点1 标识符和变量 标识符 字母和数字: 标识符由字母、数字、下划线(_)和美元符号($)组成。其中,标识符必须以字母、下划线或美元符号开头。大小写敏感: Java 是大小写敏感的语言…...

Qt将打印信息输出到文件
将打印信息(qDebug、qInfo、qWarning、qCritial等)输出到指定文件来以实现简单的日志功能。 #include "mainwindow.h" #include <QApplication> #include <QLoggingCategory> #include <QMutex> #include <QDateTime>…...

【risc-v】易灵思efinix FPGA sapphire_soc IP配置参数分享
系列文章目录 分享一些fpga内使用riscv软核的经验,共大家参考。后续内容比较多,会做成一个系列。 本系列会覆盖以下FPGA厂商 易灵思 efinix 赛灵思 xilinx 阿尔特拉 Altera 本文内容隶属于【易灵思efinix】系列。 前言 在efinix fpga中使用riscv是一…...

直播的种类及类型
随着网络技术和移动设备的普及,直播已经成为人们娱乐、学习、商业交流等众多领域的重要工具。 直播的种类主要有以下几种: 1.视频直播:这是最常见的直播形式,包括电商直播、婚庆直播、培训直播、家居直播等。 2.图文直播:这种直播形式包括PPT互动直播…...

时间序列数据压缩算法简述
本文简单介绍了时间序列压缩任务的来源,压缩算法的分类,并对常见压缩算法的优缺点进行了简介,爱码士们快来一探究竟呀! 引言 时间序列数据是在许多应用程序和领域中生成的一种基本数据类型,例如金融、医疗保健、交通和…...

智能锁-SI522TORC522方案资料
南京中科微这款SI522目前完全PinTOPin兼容的NXP:RC522、CV520 复旦微:FM17520、FM17522/FM17550 瑞盟:MS520、MS522 国民技术:NZ3801、NZ3802 SI522 是应用于13.56MHz 非接触式通信中高集成度读写卡系列芯片中的一员。是NXP 公司针对&quo…...
redux(4) -RTK简单使用
简单使用 1、下载 npm i reduxjs/toolkit react-redux 2、创建 1、在redux/user.js中创建模块user。从reduxjs/toolkit中引入createSlice创建模块片段,我们需要传入name、初始数据initialState、改state的reducers等。最后需要导出reducer和action。 代码如下&a…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...