当前位置: 首页 > news >正文

《洛谷深入浅出进阶篇》模意义下的乘法逆元+洛谷P3811

什么是乘法逆元?

算数意义上的乘法逆元指的是倒数,即:a*(1/a)=1


所以 1/a 是 a在算数意义下的乘法逆元,或者可以说二者互为逆元。
这有什么用呢?


除以a就等于乘上a的乘法逆元,乘以a等于除以a的乘法逆元。

那么我们回到我们要介绍的新的乘法逆元:模意义上的乘法逆元。(使用条件,当一个正整数做分母的时候)

例如我们要求(x+y)*(x-y)/2 mod p

很显然,对于分子,我们可以直接用模的性质
(x+y)*(x-y)modp = 【(x+y)%p *(x-y)%p】%p


但是,这样的方法只对加减乘有效。

除法的话,由于整除向下取整的原因,我们无法直接使用。这时候就要用到逆元,来代替除法,因为除以一个数取模,等于乘上它在模意义上的逆元,后取模。

ok,那么什么是模意义上的乘法逆元呢?


  给出定义: a*x = 1(mod)p,也就是a*x对p取模为1的时候,x就是a 的逆元,所以,当除以a的时候就相当于是乘上a的逆元x。(注意,模只对整数时有意义的,所以我们的变量都应该是整数)

那么我们知道了模意义上的乘法逆元,应该怎么求它的乘法逆元呢?
就可以用到三种方法:扩展欧几里得算法,费马小定理,线性递推。

扩展欧几里得算法:

a*x=1 (mod)p
这个式子可以展开写成:(扩展欧几里得相关文章连接:
《洛谷深入浅出进阶篇》 欧几里得算法,裴蜀定理,拓展欧几里得算法————洛谷P1516 青蛙的约会-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/louisdlee/article/details/134751119?spm=1001.2014.3001.5502
a*x+p*y=1
也就是求x,y的不定方程。
我们由裴蜀定理可知:这个方程只有gcd(a,p)=1的时候才有解,所以,gcd=1是求逆元的前提条件。

然后我们直接套exgcd(a,p,x,y)即可
虽然求出来的是a的一个逆元,但是我们由拓展欧几里得可以求出通式,x=x1+k*lcm(a,p)/a   (k可以取任意整数)

只要不断+模数p就可以求出最小正整数解

2,费马小定理:如果p是质数,且gcd(a,p)=1,a^(p-2)是a的一个乘法逆元。


那么如何求a^(p-2)?
我们可以用到快速幂的方法,

s=1,t=p-2   y=a
while(t!=0){
     if(p&1==1)s=s*y
     y*=y;
     t/=2;
}

线性递推求逆元


假如给你1~n个数,让你求所有整数在模p意义下的乘法逆元。你应该怎么办?(n<=1e6)

如果你每次都用exgcd或者费马小定理+快速幂这题是肯定是会超时的,所以我们只能用线性优化了。

只能使用递推的方式来解决这道题

那么我们必须找到递推的式子

假设 inv(i)是i在模意义下的逆元(记住板子即可)

p=i*q+r,其中q=【p/i】(整除),r=p%i。
第一个式子:p=i*q+r

在模意义下可以得到这样的式子:
 i*q+r == 0 (mod p)

变形为: i ==  -r/q  (mod p)

等价于:i== -r * inv(q)  (mod p)

两边取倒数:(整数的倒数来表示逆元函数)

1/i == -1/r   *   q

inv(i) == -inv(r)*q == -inv(r)*【p/i】;

因为 r=p%i,所以r是一定小于当前的i的,怎么求inv(r)

由于我们是递推求逆元,当求到i时,说明i-1,i-2,......1 都求出来了。

所以我们只要注意边界 inv(1) =1即可

但是还是有一个问题,就是,这样求出来的逆元,有些是负数的,如果我们要求逆元的最小正整数应该怎么办?
那也好办,不断在其后面加上p就可以了,当逆元大于0,退出循环。

上代码:

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<cctype>
#include<map>
#include<set>
#include<queue>
#include<numeric>
#include<iomanip>
using namespace std;
typedef long long LL;
const int N = 3e6 + 7;
LL inv[N];
int main()
{LL n,p;cin >> n>>p;inv[1] = 1;for (int i = 2; i <= n; i++) {LL q = p / i;LL r = p % i;inv[i] = (-q * inv[r]%p)%p;while(inv[i]<0)inv[i]+=p;}for (int i = 1; i <= n; i++)cout << inv[i] << '\n';
}


 

相关文章:

《洛谷深入浅出进阶篇》模意义下的乘法逆元+洛谷P3811

什么是乘法逆元&#xff1f; 算数意义上的乘法逆元指的是倒数&#xff0c;即&#xff1a;a*&#xff08;1/a&#xff09;1 所以 1/a 是 a在算数意义下的乘法逆元&#xff0c;或者可以说二者互为逆元。 这有什么用呢&#xff1f; 除以a就等于乘上a的乘法逆元&#xff0c;乘以…...

clickhouse -- clickhouse解析复杂JSON数组

举例 - 查数据 select _id,doctorId,patientId,diagnosisList from patient_disease final where diagnosisList is not null limit 3;- 解析数组 SELECT _id,doctorId,patientId,visitParamExtractRaw(diagnosisList,diagnosisName) FROM patient_disease final where _id …...

算法leetcode|91. 解码方法(rust重拳出击)

文章目录 91. 解码方法&#xff1a;样例 1&#xff1a;样例 2&#xff1a;样例 3&#xff1a;提示&#xff1a; 分析&#xff1a;题解&#xff1a;rust&#xff1a;go&#xff1a;c&#xff1a;python&#xff1a;java&#xff1a; 91. 解码方法&#xff1a; 一条包含字母 A-Z…...

zabbix配置snmp trap--使用snmptrapd和Bash接收器(缺zabbix_trap_handler.sh文中自取)--图文教程

1.前言 我的zabbix的版本是5.0版本&#xff0c;5.0的官方文档没有使用bash接收器的示例&#xff0c;6.0的官方文档有使用bash接收器的示例&#xff0c;但是&#xff0c;下载文件的链接失效&#xff1f;&#xff01; 这里讲解zabbix-server端配置和zabbix web端配置 2.zabbix-…...

vue: 线上项目element-ui的icon偶尔乱码问题

线上环境偶尔会复现&#xff0c; 具体&#xff1a; 一般使用不会出现这个问题&#xff0c;因为一般引入的是element-ui的css文件&#xff0c;问题出在于为了主题色变化啊&#xff0c;需要用到scss变量引入了scss文件。 import “~element-ui/packages/theme-chalk/src/index”…...

fpga rom 初始化文件的一些心得

目录 可能遇到的问题 问题 解决方案 rom的初始化 用途 文件类型 如何生成初始化文件 示例 Altera Xilinx 可能遇到的问题 问题 altera FPGA的rom找不到初始化文件&#xff0c;编译过程会提示类似的问题 Error(127001): Cant find Memory Initialization File or He…...

从零构建属于自己的GPT系列3:模型训练2(训练函数解读、模型训练函数解读、代码逐行解读)

&#x1f6a9;&#x1f6a9;&#x1f6a9;Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1&#xff1a;文本数据预处理 从零构建属于自己的GPT系列2&#xff1a;语…...

Python词频统计(数据整理)

请编写程序&#xff0c;对一段英文文本&#xff0c;统计其中所有不同单词的个数&#xff0c;以及词频最大的前10%的单词。 输入格式: 输入给出一段非空文本&#xff0c;最后以符号#结尾。输入保证存在至少10个不同的单词。 输出格式: 在第一行中输出文本中所有不同单词的个数…...

基本面选股的方法

基本面选股是一种投资策略&#xff0c;主要关注公司的财务状况、盈利能力、行业地位等因素&#xff0c;以判断公司的价值并做出投资决策。以下是基本面选股的具体分析方法和重点&#xff1a; 财务状况分析&#xff1a; 利润表分析&#xff1a;关注公司的净利润、毛利率、营业…...

应用密码学期末复习(3)

目录 第三章 现代密码学应用案例 3.1安全电子邮件方案 3.1.1 PGP产生的背景 3.2 PGP提供了一个安全电子邮件解决方案 3.2.1 PGP加密流程 3.2.2 PGP解密流程 3.2.3 PGP整合了对称加密和公钥加密的方案 3.3 PGP数字签名和Hash函数 3.4 公钥分发与认证——去中心化模型 …...

PAD平板签约投屏-高端活动的选择

传统的现场纸质签约仪式除了缺乏仪式感之外还缺少互动性&#xff0c;如果要将签约的过程投放到大屏幕上更是需要额外的硬件设备成本。相比于传统的纸质签约仪式&#xff0c;平板现场电子签约的形式更加的新颖、更富有科技感、更具有仪式感。 平板签约投屏是应用于会议签字仪式的…...

分布式架构demo

1、外层创建pom 版本管理器 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.7.15</version><relativePath/> <!-- lookup parent from repository…...

TA-Lib学习研究笔记(二)——Overlap Studies上

TA-Lib学习研究笔记&#xff08;二&#xff09;——Overlap Studies 1. Overlap Studies 指标 [BBANDS, DEMA, EMA, HT_TRENDLINE, KAMA, MA, MAMA, MAVP, MIDPOINT, MIDPRICE, SAR, SAREXT, SMA, T3, TEMA, TRIMA, WMA]2.数据准备 get_data函数参数&#xff08;代码&#x…...

牛客java基础考点1 标识符和变量

牛客java基础考点1 标识符和变量 标识符 字母和数字&#xff1a; 标识符由字母、数字、下划线&#xff08;_&#xff09;和美元符号&#xff08;$&#xff09;组成。其中&#xff0c;标识符必须以字母、下划线或美元符号开头。大小写敏感&#xff1a; Java 是大小写敏感的语言…...

Qt将打印信息输出到文件

将打印信息&#xff08;qDebug、qInfo、qWarning、qCritial等&#xff09;输出到指定文件来以实现简单的日志功能。 #include "mainwindow.h" #include <QApplication> #include <QLoggingCategory> #include <QMutex> #include <QDateTime>…...

【risc-v】易灵思efinix FPGA sapphire_soc IP配置参数分享

系列文章目录 分享一些fpga内使用riscv软核的经验&#xff0c;共大家参考。后续内容比较多&#xff0c;会做成一个系列。 本系列会覆盖以下FPGA厂商 易灵思 efinix 赛灵思 xilinx 阿尔特拉 Altera 本文内容隶属于【易灵思efinix】系列。 前言 在efinix fpga中使用riscv是一…...

直播的种类及类型

随着网络技术和移动设备的普及&#xff0c;直播已经成为人们娱乐、学习、商业交流等众多领域的重要工具。 直播的种类主要有以下几种: 1.视频直播:这是最常见的直播形式&#xff0c;包括电商直播、婚庆直播、培训直播、家居直播等。 2.图文直播:这种直播形式包括PPT互动直播…...

时间序列数据压缩算法简述

本文简单介绍了时间序列压缩任务的来源&#xff0c;压缩算法的分类&#xff0c;并对常见压缩算法的优缺点进行了简介&#xff0c;爱码士们快来一探究竟呀&#xff01; 引言 时间序列数据是在许多应用程序和领域中生成的一种基本数据类型&#xff0c;例如金融、医疗保健、交通和…...

智能锁-SI522TORC522方案资料

南京中科微这款SI522目前完全PinTOPin兼容的NXP&#xff1a;RC522、CV520 复旦微&#xff1a;FM17520、FM17522/FM17550 瑞盟&#xff1a;MS520、MS522 国民技术:NZ3801、NZ3802 SI522 是应用于13.56MHz 非接触式通信中高集成度读写卡系列芯片中的一员。是NXP 公司针对&quo…...

redux(4) -RTK简单使用

简单使用 1、下载 npm i reduxjs/toolkit react-redux 2、创建 1、在redux/user.js中创建模块user。从reduxjs/toolkit中引入createSlice创建模块片段&#xff0c;我们需要传入name、初始数据initialState、改state的reducers等。最后需要导出reducer和action。 代码如下&a…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...

【深尚想】TPS54618CQRTERQ1汽车级同步降压转换器电源芯片全面解析

1. 元器件定义与技术特点 TPS54618CQRTERQ1 是德州仪器&#xff08;TI&#xff09;推出的一款 汽车级同步降压转换器&#xff08;DC-DC开关稳压器&#xff09;&#xff0c;属于高性能电源管理芯片。核心特性包括&#xff1a; 输入电压范围&#xff1a;2.95V–6V&#xff0c;输…...

从零手写Java版本的LSM Tree (一):LSM Tree 概述

&#x1f525; 推荐一个高质量的Java LSM Tree开源项目&#xff01; https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree&#xff0c;专为高并发写入场景设计。 核心亮点&#xff1a; ⚡ 极致性能&#xff1a;写入速度超…...

二叉树-144.二叉树的前序遍历-力扣(LeetCode)

一、题目解析 对于递归方法的前序遍历十分简单&#xff0c;但对于一位合格的程序猿而言&#xff0c;需要掌握将递归转化为非递归的能力&#xff0c;毕竟递归调用的时候会调用大量的栈帧&#xff0c;存在栈溢出风险。 二、算法原理 递归调用本质是系统建立栈帧&#xff0c;而非…...