【深度学习】KMeans中自动K值的确认方法
1 前言
聚类常用于数据探索或挖掘前期,在没有做先验经验的背景下做的探索性分析,也适用于样本量较大情况下的数据预处理等方面工作。例如针对企业整体用户特征,在未得到相关知识或经验之前先根据数据本身特点进行用户分群,然后再针对不同群体做进一步分析;例如将连续数据做离散化,便于做后续分类分析应用。
KMeans是聚类方法中非常常用的方法,并且在正确确定K的情况下,KMeans对类别的划分跟分类算法的差异性非常小,这也意味着KMeans是一个准确率非常接近实际分类的算法。本文将讨论如下基于自动化的方法确立K值。
本案例是《Python数据分析与数据化运营》中“7.11案例-基于自动K值的KMeans广告效果聚类分析”的一部分,其ad_performance.txt和源代码chapter7_code2.py位于“附件-chapter7”中,该附件可以在可从http://www.dataivy.cn/book/python_book.zip或https://pan.baidu.com/s/1kUUBWNX下载。
2 实现思路
K值的确定一直是KMeans算法的关键,而由于KMeans是一个非监督式学习,因此没有所谓的“最佳”K值。但是,从数据本身的特征来讲,最佳K值对应的类别下应该是类内距离最小化并且类间距离最大化。有多个指标可以用来评估这种特征,比如平均轮廓系数、类内距离/类间距离等都可以做此类评估。基于这种思路,我们可以通过枚举法计每个K下的平均轮廓系数值,然后选出平均轮廓系数最大下的K值。
3 核心过程
假设我们已经拥有一份预处理过的数据集,其中的异常值、缺失值、数据标准化等前期工作都已经完成。下面是完成自动K值确定的核心流程:
- score_list = list() # 用来存储每个K下模型的平局轮廓系数
- silhouette_int = -1 # 初始化的平均轮廓系数阀值
- for n_clusters in range(2, 10): # 遍历从2到10几个有限组
- model_kmeans =KMeans(n_clusters=n_clusters, random_state=0) # 建立聚类模型对象
- cluster_labels_tmp =model_kmeans.fit_predict(X) # 训练聚类模型
- silhouette_tmp =metrics.silhouette_score(X, cluster_labels_tmp) # 得到每个K下的平均轮廓系数
- if silhouette_tmp >silhouette_int: # 如果平均轮廓系数更高
- best_k =n_clusters # 将最好的K存储下来
- silhouette_int =silhouette_tmp # 将最好的平均轮廓得分存储下来
- best_kmeans =model_kmeans # 将最好的模型存储下来
- cluster_labels_k =cluster_labels_tmp # 将最好的聚类标签存储下来
- score_list.append([n_clusters, silhouette_tmp]) # 将每次K及其得分追加到列表
- print ('{:^60}'.format(‘K value and silhouette summary:’))
- print (np.array(score_list)) # 打印输出所有K下的详细得分
- print (‘Best K is:{0} with average silhouette of{1}’.format(best_k, silhouette_int.round(4)))
该步骤的主要实现过程如下:
定义初始变量score_list和silhouette_int。score_list用来存储每个K下模型的平局轮廓系数,方便在最终打印输出详细计算结果;silhouette_int的初始值设置为-1,每个K下计算得到的平均轮廓系数如果比该值大,则将其值赋值给silhouette_int。
提示:对于平均轮廓系数而言,其值域分布式[-1,1]。因此silhouette_int的初始值可以设置为-1或比-1更小的值。
使用for循环遍历每个K值,这里的K的范围确定为从2-10.一般而言,用于聚类分析的K值的确定不会太大。如果值太大,那么聚类效果可能不明显,因为大量信息的都会被分散到各个小类之中,会导致数据的碎片化。
通过KMeans(n_clusters=n_clusters, random_state=0)建立KMeans模型对象model_kmeans,设置聚类数为循环中得到的K值,设置固定的初始状态。
对model_kmeans使用fit_predict得到其训练集的聚类标签。该步骤其实无需通过predict获得标签,可以先使用fit方法对模型做训练,然后使用模型对象model_kmeans的label_属性获得其训练集的标签分类。
使用metrics.silhouette_score方法对数据集做平均轮廓系数得分检验,将其得分赋值给silhouette_tmp,输入参数有两个:
- X:为原始输入的数组或矩阵
- cluster_labels:训练集对应的聚类标签
接下来做判断,如果计算后的得分大于初始化变量的得分,那么:
- 将最佳K值存储下来,便于后续输出展示
- 将最好的平均轮廓得分存储下来,便于跟其他后续得分做比较以及输出展示
- 将最好的模型存储下来,这样省去了后续再做最优模型下fit(训练)的工作
- 将最好的聚类标签存储下来,这样方便下面将原始训练集与最终标签合并
每次循环结束后,将当次循环的K值以及对应的评论轮廓得分使用append方法追加到列表。
最后打印输出每个K值下详细信息以及最后K值和最优评论轮廓得分,返回数据如下:
- K value and silhouette summary:
- [[ 2. 0.46692821]
- [ 3. 0.54904646]
- [ 4. 0.56968547]
- [ 5. 0.48186604]
- [ 6. 0.45477667]
- [ 7. 0.48204261]
- [ 8. 0.50447223]
- [ 9. 0.52697493]]
- Best K is:4 with average silhouette of 0.5697
上述结果显示了不同K下的平均轮廓得分。就经验看,如果平均轮廓得分值小于0,意味着聚类效果不佳;如果值大约0且小于0.5,那么说明聚类效果一般;如果值大于0.5,则说明聚类效果比较好。本案例在K=4时,得分为0.5697,说明效果较好。
对于上述得到的结果,将最优K值下得到的KMeans模型的结果,可以通过各类别的类内、外数据的对比以及配合雷达图或极坐标图做分析解释。

各聚类类别显著特征对比
4 引申思考
注意,即使在数据上聚类特征最明显,也并不意味着聚类结果就是有效的,因为这里的聚类结果用来分析使用,不同类别间需要具有明显的差异性特征并且类别间的样本量需要大体分布均衡。而确定最佳K值时却没有考虑到这些“业务性”因素。
案例中通过平均轮廓系数的方法得到的最佳K值不一定在业务上具有明显的解读和应用价值。如果最佳K值的解读无效怎么办?有两种思路:
- 扩大K值范围,例如将K的范围调整为[2,12],然后再次运算看更大范围内得到的K值是否更加有效并且能符合业务解读和应用需求。
- 得到平均轮廓系数“次要好”(而不是最好)的K值,再对其结果做分析。
对于不同类别的典型特征的对比,除了使用雷达图直观的显示外,还可以使用多个柱形图的形式,将每个类别对应特征的值做柱形图统计,这样也是一个非常直观的对比方法。具体参考下图:

相关文章:
【深度学习】KMeans中自动K值的确认方法
1 前言 聚类常用于数据探索或挖掘前期,在没有做先验经验的背景下做的探索性分析,也适用于样本量较大情况下的数据预处理等方面工作。例如针对企业整体用户特征,在未得到相关知识或经验之前先根据数据本身特点进行用户分群,然后再…...
github问题解决(持续更新中)
1、ssh: connect to host github.com port 22: Connection refused 从.ssh文件夹中新建文件名为config,内容为: Host github.com Hostname ssh.github.com Port 4432、解决 git 多用户提交切换问题 使用系统命令ssh创建rsa公私秘钥 C:\Users\fyp01&g…...
如何创建一个vue工程
1.打开vue安装网址:安装 | Vue CLI (vuejs.org) 2.创建一个项目文件夹 3.复制地址 4.打开cmd,进入这个地址 5.复制粘贴vue网页的安装命令 npm install -g vue/cli 6.创建vue工程 vue create vue这里可以通过上下键来进行选择。选最后一个选项按回车。 …...
50 代码审计-PHP无框架项目SQL注入挖掘技巧
目录 演示案例:简易SQL注入代码段分析挖掘思路QQ业务图标点亮系统挖掘-数据库监控追踪74CMS人才招聘系统挖掘-2次注入应用功能(自带转义)苹果CMS影视建站系统挖掘-数据库监控追踪(自带过滤) 技巧分析:总结: demo段指的是代码段,先…...
基于Spring、SpringMVC、MyBatis的企业博客网站
文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于Spring、SpringMVC、MyBatis的企业博…...
spring日志输出到elasticsearch
1.maven <!--日志elasticsearch--><dependency><groupId>com.agido</groupId><artifactId>logback-elasticsearch-appender</artifactId><version>3.0.8</version></dependency><dependency><groupId>net.l…...
谷歌 Gemini 模型发布计划推迟:无法可靠处理部分非英语沟通
本心、输入输出、结果 文章目录 谷歌 Gemini 模型发布计划推迟:无法可靠处理部分非英语沟通前言由谷歌 CEO 桑达尔・皮查伊做出决策从一开始,Gemini 的目标就是多模态、高效集成工具、API花有重开日,人无再少年实践是检验真理的唯一标准 谷歌…...
Ubuntu显卡及内核更新问题
显卡安装(2023.12.04) # 查看显卡型号 lspci | grep -i nvidia # 卸载原nvidia 显卡驱动 sudo apt-get --purge remove nvidia*# 禁用nouveau(nouveau是ubuntu自带显卡驱动) sudo gedit /etc/modprobe.d/blacklist.conf # 新增2行…...
SpringBoot错误处理机制解析
SpringBoot错误处理----源码解析 文章目录 1、默认机制2、使用ExceptionHandler标识一个方法,处理用Controller标注的该类发生的指定错误1).局部错误处理部分源码2).测试 3、 创建一个全局错误处理类集中处理错误,使用Controller…...
牛客剑指offer刷题模拟篇
文章目录 顺时针打印矩阵题目思路代码实现 扑克牌顺子题目思路代码实现 把字符串转换成整数题目思路代码实现 表示数值的字符串题目思路代码实现 顺时针打印矩阵 题目 描述 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如…...
Locust单机多核压测,以及主从节点的数据通信处理!
一、背景 这还是2个月前做的一次接口性能测试,关于locust脚本的单机多核运行,以及主从节点之间的数据通信。 先简单交代下背景,在APP上线之前,需要对登录接口进行性能测试。经过评估,我还是优先选择了locust来进行脚…...
ERROR: [pool www] please specify user and group other than root
根据提供的日志信息,PHP-FPM 服务未能启动的原因是配置文件中的一个错误。错误消息明确指出了问题所在: [29-Nov-2023 14:28:26] ERROR: [pool www] please specify user and group other than root [29-Nov-2023 14:28:26] ERROR: FPM initialization …...
京东商品详情接口在电商行业中的重要性及实时数据获取实现
一、引言 随着电子商务的快速发展,商品信息的准确性和实时性对于电商行业的运营至关重要。京东作为中国最大的电商平台之一,其商品详情接口在电商行业中扮演着重要的角色。本文将深入探讨京东商品详情接口的重要性,并介绍如何通过API实现实时…...
WT2003H MP3语音芯片方案:强大、灵活且易于集成的音频解决方案
在当今的数字化时代,音频技术的普遍性已不容忽视。从简单的音乐播放,到复杂的语音交互,音频技术的身影无处不在。在这个背景下,WT2003H MP3语音芯片方案应运而生,它提供了一种强大、灵活且易于集成的音频解决方案。 1…...
机器学习深度学学习分类模型中常用的评价指标总结记录与代码实现说明
在机器学习深度学习算法模型大开发过程中,免不了要对算法模型进行对应的评测分析,这里主要是总结记录分类任务中经常使用到的一些评价指标,并针对性地给出对应的代码实现,方便读者直接移植到自己的项目中。 【混淆矩阵】 混淆矩阵…...
fastapi 后端项目目录结构 mysql fastapi 数据库操作
原文:fastapi 后端项目目录结构 mysql fastapi 数据库操作_mob6454cc786d85的技术博客_51CTO博客 一、安装sqlalchemy、pymysql模块 pip install sqlalchemy -i https://pypi.tuna.tsinghua.edu.cn/simple pip install pymysql -i https://pypi.tuna.tsinghua.edu.…...
研习代码 day47 | 动态规划——子序列问题3
一、判断子序列 1.1 题目 给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde&…...
L1-017:到底有多二
题目描述 一个整数“犯二的程度”定义为该数字中包含2的个数与其位数的比值。如果这个数是负数,则程度增加0.5倍;如果还是个偶数,则再增加1倍。例如数字-13142223336是个11位数,其中有3个2,并且是负数,也是…...
Python多线程使用(二)
使用多个线程的时候容易遇到一个场景:多个线程处理一份数据 使用多线程的时候同时处理一份数据,在threading中提供了一个方法:线程锁 Demo:下订单 现在有多笔订单下单,库存减少 from threading import Thread from t…...
记录一次docker搭建tomcat容器的网页不能访问的问题
tomcat Tomcat是Apache软件基金会的Jakarta项目中的一个重要子项目,是一个Web服务器,也是Java应用服务器,是开源免费的软件。它是一个兼容Java Servlet和JavaServer Pages(JSP)的Web服务器,可以作为独立的W…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...
