ClickHouse(16)ClickHouse日志引擎Log详细解析
日志引擎系列
这些引擎是为了需要写入许多小数据量(少于一百万行)的表的场景而开发的。
这系列的引擎有:
- StripeLog
- Log
- TinyLog
共同属性
引擎:
-
数据存储在磁盘上。
-
写入时将数据追加在文件末尾。
-
不支持突变操作,也就是更新。
-
不支持索引。
这意味着 `SELECT` 在范围查询时效率不高。
-
非原子地写入数据。
如果某些事情破坏了写操作,例如服务器的异常关闭,你将会得到一张包含了损坏数据的表。
差异
Log
和 StripeLog
引擎支持:
-
并发访问数据的锁。
`INSERT` 请求执行过程中表会被锁定,并且其他的读写数据的请求都会等待直到锁定被解除。如果没有写数据的请求,任意数量的读请求都可以并发执行。
-
并行读取数据。
在读取数据时,ClickHouse 使用多线程。 每个线程处理不同的数据块。
Log
引擎为表中的每一列使用不同的文件。StripeLog
将所有的数据存储在一个文件中。因此 StripeLog
引擎在操作系统中使用更少的描述符,但是 Log
引擎提供更高的读性能。
TinyLog
引擎是该系列中最简单的引擎并且提供了最少的功能和最低的性能。TinyLog
引擎不支持并行读取和并发数据访问,并将每一列存储在不同的文件中。它比其余两种支持并行读取的引擎的读取速度更慢,并且使用了和 Log
引擎同样多的描述符。你可以在简单的低负载的情景下使用它。
Log
与 TinyLog
的不同之处在于,«标记» 的小文件与列文件存在一起。这些标记写在每个数据块上,并且包含偏移量,这些偏移量指示从哪里开始读取文件以便跳过指定的行数。这使得可以在多个线程中读取表数据。对于并发数据访问,可以同时执行读取操作,而写入操作则阻塞读取和其它写入。Log
引擎不支持索引。同样,如果写入表失败,则该表将被破坏,并且从该表读取将返回错误。Log
引擎适用于临时数据,write-once 表以及测试或演示目的。
TinyLog
最简单的表引擎,用于将数据存储在磁盘上。每列都存储在单独的压缩文件中。写入时,数据将附加到文件末尾。
并发数据访问不受任何限制:
如果同时从表中读取并在不同的查询中写入,则读取操作将抛出异常
如果同时写入多个查询中的表,则数据将被破坏。
这种表引擎的典型用法是 write-once:首先只写入一次数据,然后根据需要多次读取。查询在单个流中执行。换句话说,此引擎适用于相对较小的表(建议最多1,000,000行)。如果您有许多小表,则使用此表引擎是适合的,因为它比Log引擎更简单(需要打开的文件更少)。当您拥有大量小表时,可能会导致性能低下,但在可能已经在其它 DBMS 时使用过,则您可能会发现切换使用 TinyLog 类型的表更容易。不支持索引。
在 Yandex.Metrica 中,TinyLog 表用于小批量处理的中间数据。
stripelog
在你需要写入许多小数据量(小于一百万行)的表的场景下使用这个引擎。
建表
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(column1_name [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],column2_name [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],...
) ENGINE = StripeLog
写数据 {#table_engines-stripelog-writing-the-data}
StripeLog
引擎将所有列存储在一个文件中。对每一次 Insert
请求,ClickHouse 将数据块追加在表文件的末尾,逐列写入。
ClickHouse 为每张表写入以下文件:
data.bin
— 数据文件。index.mrk
— 带标记的文件。标记包含了已插入的每个数据块中每列的偏移量。
StripeLog
引擎不支持 ALTER UPDATE
和 ALTER DELETE
操作。
读数据 {#table_engines-stripelog-reading-the-data}
带标记的文件使得 ClickHouse 可以并行的读取数据。这意味着 SELECT
请求返回行的顺序是不可预测的。使用 ORDER BY
子句对行进行排序。
使用示例 {#table_engines-stripelog-example-of-use}
建表:
CREATE TABLE stripe_log_table
(timestamp DateTime,message_type String,message String
)
ENGINE = StripeLog
插入数据:
INSERT INTO stripe_log_table VALUES (now(),'REGULAR','The first regular message')
INSERT INTO stripe_log_table VALUES (now(),'REGULAR','The second regular message'),(now(),'WARNING','The first warning message')
我们使用两次 INSERT
请求从而在 data.bin
文件中创建两个数据块。
ClickHouse 在查询数据时使用多线程。每个线程读取单独的数据块并在完成后独立的返回结果行。这样的结果是,大多数情况下,输出中块的顺序和输入时相应块的顺序是不同的。例如:
SELECT * FROM stripe_log_table
┌───────────timestamp─┬─message_type─┬─message────────────────────┐
│ 2019-01-18 14:27:32 │ REGULAR │ The second regular message │
│ 2019-01-18 14:34:53 │ WARNING │ The first warning message │
└─────────────────────┴──────────────┴────────────────────────────┘
┌───────────timestamp─┬─message_type─┬─message───────────────────┐
│ 2019-01-18 14:23:43 │ REGULAR │ The first regular message │
└─────────────────────┴──────────────┴───────────────────────────┘
对结果排序(默认增序):
SELECT * FROM stripe_log_table ORDER BY timestamp
┌───────────timestamp─┬─message_type─┬─message────────────────────┐
│ 2019-01-18 14:23:43 │ REGULAR │ The first regular message │
│ 2019-01-18 14:27:32 │ REGULAR │ The second regular message │
│ 2019-01-18 14:34:53 │ WARNING │ The first warning message │
└─────────────────────┴──────────────┴────────────────────────────┘
资料分享
ClickHouse经典中文文档分享
参考文章
- ClickHouse(01)什么是ClickHouse,ClickHouse适用于什么场景
- ClickHouse(02)ClickHouse架构设计介绍概述与ClickHouse数据分片设计
- ClickHouse(03)ClickHouse怎么安装和部署
- ClickHouse(04)如何搭建ClickHouse集群
- ClickHouse(05)ClickHouse数据类型详解
- ClickHouse(06)ClickHouse建表语句DDL详细解析
- ClickHouse(07)ClickHouse数据库引擎解析
- ClickHouse(08)ClickHouse表引擎概况
- ClickHouse(09)ClickHouse合并树MergeTree家族表引擎之MergeTree详细解析
- ClickHouse(10)ClickHouse合并树MergeTree家族表引擎之ReplacingMergeTree详细解析
- ClickHouse(11)ClickHouse合并树MergeTree家族表引擎之SummingMergeTree详细解析
- ClickHouse(12)ClickHouse合并树MergeTree家族表引擎之AggregatingMergeTree详细解析
- ClickHouse(13)ClickHouse合并树MergeTree家族表引擎之CollapsingMergeTree详细解析
- ClickHouse(14)ClickHouse合并树MergeTree家族表引擎之VersionedCollapsingMergeTree详细解析
- ClickHouse(15)ClickHouse合并树MergeTree家族表引擎之GraphiteMergeTree详细解析
相关文章:
ClickHouse(16)ClickHouse日志引擎Log详细解析
日志引擎系列 这些引擎是为了需要写入许多小数据量(少于一百万行)的表的场景而开发的。 这系列的引擎有: StripeLogLogTinyLog 共同属性 引擎: 数据存储在磁盘上。 写入时将数据追加在文件末尾。 不支持突变操作,也就是更新…...
opencv项目开发实战--填补字母的空白
目录 完成/填写字母 OpenCV C++ 完成opencv表中缺失的行 如何使用 OpenCV 获取图像中所有文本的位置? 完成/填写字母 OpenCV C++ 解决方案一: 您似乎已经对图像进行了...

Wnmp本地搭建结合内网穿透实现远程访问本地Wnmp服务
文章目录 前言1.Wnmp下载安装2.Wnmp设置3.安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3.4 创建公网地址 4.固定公网地址访问 正文开始前给大家推荐个网站,前些天发现了一个巨牛的 人工智能学习网站, 通俗易懂&a…...

C++ 红黑树的封装
一.map/set的封装 在实现了红黑树的部分功能后,我们可以便可以将红黑树作为底层结构来封装map 和 set ,但是问题也随之而来。我们都知道map是k-v的数据模型,而set是k的数据模型,我们难道要去使用两棵红黑树来封装吗?显…...

MongoDB快速入门及其SpringBoot实战
MongoDB快速入门及其SpringBoot实战 MongoDB简介 MongoDB 是一个基于分布式文件存储的数据库。由 C 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。 MongoDB是一个开源、高性能、无模式的文档型数据库,当初的设计就是用于简化开发和方便扩展&am…...

Python网络爬虫练习
爬取历年中国大学排名(前20名),并随机选取一所高校画图展示其历年总分变化,并计算平均分,在图上展示该平均分直线: 代码如下: import matplotlib.pyplot as plt import pandas as pd import requests import randomdef main(yea…...

《opencv实用探索·九》中值滤波简单理解
1、引言 均值滤波、方框滤波、高斯滤波,都是线性滤波方式。由于线性滤波的结果是所有像素值的线性组合,因此含有噪声的像素也会被考虑进去,噪声不会被消除,而是以更柔和的方式存在。这时使用非线性滤波效果可能会更好。中值滤波是…...

PC行内编辑
点击编辑,行内编辑输入框出现,给列表的每条数据定义编辑标记,最后一定记得 v-model双向绑定,使数据回显。 步骤: 1、给行数据定义编辑标记 2、点击行编辑标记(isedit) 3、插槽根据标记渲染表单 …...
鸿蒙开发:Stage模型开发-应用/组件级配置以及UIAbility组件初步使用【鸿蒙专栏-20】
文章目录 Stage模型开发概述基本概念UIAbility组件和ExtensionAbility组件WindowStageContextAbilityStage开发流程应用组件开发了解进程模型了解线程模型应用配置文件应用版本声明配置Module支持的设备类型配置Module权限配置进阶应用配置...
Django回顾【五】
目录 一、多表操作 【1】基于对象的跨表查 【2】基于双下滑线的连表查 【3】related_name 二、聚合查询与分组查询 【1】聚合查询 【2】分组查询 三、F与Q查询 【1】F查询 【2】Q查询 四、其他字段和字段参数 【1】其他字段 【2】ORM字段参数 【3】ForeignKey 属…...

Python容器——字典
Key——Value 键值对...

基于Java SSM框架实现实现四六级英语报名系统项目【项目源码+论文说明】
基于java的SSM框架实现四六级英语报名系统演示 摘要 本论文主要论述了如何使用JAVA语言开发一个高校四六级报名管理系统,本系统将严格按照软件开发流程进行各个阶段的工作,采用B/S架构,面向对象编程思想进行项目开发。在引言中,作…...

翻硬币(第四届蓝桥杯省赛C++B组)(java版)
//翻硬币,每次都会改变两个硬币的状态 //因此我们可以从前往后枚举,s1[i] 与 s2[i] 状态不同就改变它的状态 //同时s1[i 1] 与 s2[i 1] 的状态会因此改变 // 所以继续往下枚举s1[i 1] 与 s2[i 1] //因为题目有说必须有解,因此枚举到 n - 1位的时候,两个字符串的…...

原生GPT本地及云端部署方式保姆级教程
前提条件 部署必须要有一个超过1年的Github账号 本地服务部署 运行效果 部署方法 下载安装包 暂时无法在飞书文档外展示此内容 GitHub授权登录: https://dash.pandoranext.com/ 登录后是这个样子: 复制下面红框里面这个License Id 编辑Config.js…...

Docker容器(一)概述
一、虚拟化概述 1.1引⼊虚拟化技术的必要性 服务器只有5%的时间是在⼯作的;在其它时间服务器都处于“休眠”状态. 虚拟化前 每台主机⼀个操作系统; 软硬件紧密结合; 在同⼀个主机上运⾏多个应⽤程序通常会遭遇冲突; 系统的资源利⽤率低; 硬件成本⾼昂⽽且不够灵活…...

Facebook引流怎么做?写个脚本就好!
在当今的数字化时代,流量对于任何一个网站或应用程序来说都至关重要,Facebook,作为全球最大的社交网络平台,无疑是一个获取流量的绝佳场所,但是,如何有效地从Facebook引流呢?写个脚本就好了! 在本文中&am…...

自动化集成有哪些典型应用场景?
为什么要做自动化场景集成? 主要分为以下几点: 提高效率/减少错误:减少人工操作、人为错误、人力成本,提高生产效率、生产质量和稳定性。 提高可靠性:提高系统的可靠性和稳定性,减少系统故障和停机时间。…...
探讨几种在CentOS 7上实现文件上传的方法
最近服务器过期了,把之前服务器的数据库都备份了下来,现在准备迁移各种服务,这就涉及到文件传输。之前用得多的都是xshell里的xtp来传,校园网禁用了ssh协议,还有一大堆乱七八糟的协议,我一般用的代理方法或…...
AWS EC2使用 instance profile 访问S3
AWS EC2 instance可以使用instance profile 配置访问S3的权限。 然后就可以直接在EC2上执行 python代码或者AWS CLI去访问S3了。 唯一需要注意的地方是,申明region。 示例代码: aws s3 ls xxxx-s3-bucket --region xxx-region import boto3 client …...

python中函数式编程
文章目录 map()函数filter()函数reduce()函数 map()函数 当使用map()函数时,可以使用lambda表达式来定义一个简单的转换函数。 以下是一个使用map()函数和lambda表达式的简单示例: numbers [1, 2, 3, 4, 5] squared_numbers map(lambda x: x**2, nu…...

VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景
Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知,帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量,能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度,还为机器人、医疗设备和制造业的智…...