Python实现FA萤火虫优化算法优化卷积神经网络分类模型(CNN分类算法)项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。


1.项目背景
萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , 作为最新的群智能优化算法之一,该算法具有更好的收敛速度和收敛精度,且易于工程实现等优点。
本项目通过FA萤火虫优化算法优化卷积神经网络分类模型。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
| 编号 | 变量名称 | 描述 |
| 1 | x1 | |
| 2 | x2 | |
| 3 | x3 | |
| 4 | x4 | |
| 5 | x5 | |
| 6 | x6 | |
| 7 | x7 | |
| 8 | x8 | |
| 9 | x9 | |
| 10 | x10 | |
| 11 | y | 因变量 |
数据详情如下(部分展示):

3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:

3.3 数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:

4.探索性数据分析
4.1 y变量柱状图
用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图
用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:

5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:
![]()
5.3 数据样本增维
数据样本增加维度后的数据形状:
6.构建FA萤火虫优化算法优化CNN分类模型
主要使用FA萤火虫优化算法优化CNN分类算法,用于目标分类。
6.1 FA萤火虫优化算法寻找最优的参数值
最优参数:
6.2 最优参数值构建模型
| 编号 | 模型名称 | 参数 |
| 1 | CNN分类模型 | units=best_units |
| 2 | epochs=best_epochs |
6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失和准确率曲线图

7.模型评估
7.1 评估指标及结果
评估指标主要包括准确率、查准率、查全率、F1分值等等。
| 模型名称 | 指标名称 | 指标值 |
| 测试集 | ||
| CNN分类模型 | 准确率 | 0.9200 |
| 查准率 | 0.9219 | |
| 查全率 | 0.9124 | |
| F1分值 | 0.9171 | |
从上表可以看出,F1分值为0.9171,说明模型效果较好。
关键代码如下:

7.2 分类报告
从上图可以看出,分类为0的F1分值为0.92;分类为1的F1分值为0.92。
7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有15个样本;实际为1预测不为1的 有17个样本,整体预测准确率良好。
8.结论与展望
综上所述,本文采用了FA萤火虫优化算法寻找卷积神经网络CNN算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。
# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:链接:https://pan.baidu.com/s/1lYkhR1_YGyN3iWHstU7HTQ
提取码:j5im
更多项目实战,详见机器学习项目实战合集列表:
机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客
相关文章:
Python实现FA萤火虫优化算法优化卷积神经网络分类模型(CNN分类算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , …...
不瞒各位,不安装软件也能操作Xmind文档
大家好,我是小悟 作为搞技术的一个人群,时不时就要接收产品经理发过来的思维脑图,而此类文档往往是以Xmind编写的,如果你的电脑里面没有安装Xmind的话,不好意思,是打不开这类后缀结尾的文档。 打不开的话…...
你了解Redis 的二进制安全吗
最近面试的时候被问到Redis 的二进制安全相关八股文面试题。Redis二进制安全内容比较多,以下是简单的总结大致的过程,需要深入学习的建议跳过 Redis是基于C语言进行开发的,而C语言中的字符串是二进制不安全的,所以Redis就没有直接…...
探索前端设计的新境界——介绍IVueUI工具助力Vue页面设计
在快速发展的前端领域,Vue.js作为一款渐进式JavaScript框架,一直备受开发者喜爱。然而,在Vue前端开发的旅程中,页面设计常常是一个不可避免的挑战。今天,我要向大家介绍一款令Vue前端开发者受益匪浅的工具——www.ivue…...
数据管理系统-week10-数据库安全
文章目录 前言一、什么是数据库安全?二、威胁三、对抗措施四、授权和认证五、访问控制(重点)自由访问控制(DAC)强制访问控制(MAC)补充一个贝尔-lapadula模型六、加密参考文献前言 数据库安全意味着保护数据库免受有意或无意的未经授权的访问,数据库安全需要保护数据库…...
MySQL笔记-第05章_排序与分页
视频链接:【MySQL数据库入门到大牛,mysql安装到优化,百科全书级,全网天花板】 文章目录 第05章_排序与分页1. 排序数据1.1 排序规则1.2 单列排序1.3 多列排序 2. 分页2.1 背景2.2 实现规则2.3 拓展 第05章_排序与分页 讲师&#…...
MySQL笔记-第02章_MySQL环境搭建
视频链接:【MySQL数据库入门到大牛,mysql安装到优化,百科全书级,全网天花板】 文章目录 第02章_MySQL环境搭建1. MySQL的卸载步骤1:停止MySQL服务步骤2:软件的卸载步骤3:残余文件的清理步骤4&am…...
★136. 只出现一次的数字(位运算)
136. 只出现一次的数字 这个题主要考察的知识点是位运算(这里是异或) 如果不要求空间复杂度为O(1),那有很多方法。但是这里有这样的要求。 可以通过位运算 的方法来实现。 异或运算 ⊕有以下三个性质: 任…...
阿里云效一键部署前后端
静态站点到OSS 阿里云-云效,阿里云企业级一站式 DevOps,可以免费使用(会限制人数、流水线数量等,个人项目够用了)。相关文章 CI 持续集成 - 阿里云云效 OSS 是对象存储的意思,一般一个项目对应一个 Bucke…...
【算法集训】基础数据结构:一、顺序表(上)
顺序表是最基础的数组结构,所有数据都按顺序存储。 第一题 1464. 数组中两元素的最大乘积 https://leetcode.cn/problems/maximum-product-of-two-elements-in-an-array/description/ 第一种:常规解法,遍历两次数组根据条件比较出最大的即可…...
封装websocket并在vuejs中调用
1、创建JS文件ce-websocket-util.js class CeWebsocketUtil {websocket null;reConnectTimes 0; // 失败后重新连接次数wsInterVal null; // 重新连接定时器maxReConnectTimes 10; // 最大连接次数,默认10次reIntervalTime 60 * 1000; // 重连间隔时间,默认1m…...
博捷芯:半导体芯片切割,一道精细工艺的科技之门
在半导体制造的过程中,芯片切割是一道重要的环节,它不仅决定了芯片的尺寸和形状,还直接影响到芯片的性能和使用效果。随着科技的不断进步,芯片切割技术也在不断发展,成为半导体制造领域中一道精细工艺的科技之门。 芯片…...
BiseNet实现遥感影像地物分类
遥感地物分类通过对遥感图像中的地物进行准确识别和分类,为资源管理、环境保护、城市规划、灾害监测等领域提供重要信息,有助于实现精细化管理和科学决策,提升社会治理和经济发展水平。深度学习遥感地物分类在提高分类精度、自动化程度、处理…...
【SpringBoot系列】SpringBoot时间字段格式化
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
.net core 连接数据库,通过数据库生成Modell
1、安装EF Core Power Tools:打开Vs开发工具→扩展→管理扩展 2、(切记执行这步之前确保自己的代码不存在编写或者编译错误!)安装完成后在你需要创建数据库实体的项目文件夹上面单击右键,找到EF Core 工具(必须安装扩展之和才会有…...
开发工具idea中推荐插件
主要是记录一下idea中实用插件,方便开发,换个电脑工作的时候也可以直接在市场中下载使用。 1、Easy Javadoc 自动生成javadoc文档注释,基本上是按照字段名或者方法名翻译的,还是相当好用的。 2、EasyYapi 可以快捷生成接口文档…...
[c++]—string类___深度学习string标准库成员函数与非成员函数
要相信别人能做出来自己一定可以做出来,只不过是时间没到而已 目录 🚩string类对象capacity操作 💻reserve()保留 💻resize() 🚩string类对象元素访问操作 💻operator[]和at() 💻operator…...
PHP 双门双向门禁控制板实时监控源码
本示例使用设备: 实时网络双门双向门禁控制板可二次编程控制网络继电器远程开关-淘宝网 (taobao.com) <?PHPheader("content-type:text/html;charsetGBK");$ThisIpget_local_ip(); //获取电脑IP地址 $server udp://.$ThisIp.:39192; $sock…...
【源码解析】聊聊线程池 实现原理与源码深度解析(二)
AbstractExecutorService 上一篇文章中,主要介绍了AbstractExecutorService的线程执行的核心流程,execute() 这个方法显然是没有返回执行任务的结果,如果我们需要获取任务执行的结果,怎么办? Callable 就是一个可以获…...
本地Lambda(SAM LI)+ MySQL(Docker)环境构筑注意点
目录构成 mysql8 ├─data ├─logs └─docker├─docker-compose.yml├─.env├─config└─my.cnf .env DB_NAMEtest_db ROOT_DB_PASSroot_password DB_USERtest_user DB_PASStest_password DB_PORT3306 TZAsia/Tokyo docker-compose.yml version: "3.6" ser…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...
CppCon 2015 学习:Time Programming Fundamentals
Civil Time 公历时间 特点: 共 6 个字段: Year(年)Month(月)Day(日)Hour(小时)Minute(分钟)Second(秒) 表示…...
