当前位置: 首页 > news >正文

【华为数据之道学习笔记】非数字原生企业的特点

       非数字原生企业的数字化转型挑战
        软件和数据平台为核心的数字世界入口,便捷地获取和存储了大量的数据,并开始尝试通过机器学习等人工智能技术分析这些数据,以便更好地理解用户需求,增强数字化创新能力。部分数字原生企业引领着云计算、大数据、人工智能技术的发展,推动了数字化时代的发展。在这些数字原生企业中,整个企业的战略愿景、业务需求、组织
架构、人员技能、管理文化、思考方式都是围绕着数字世界展开的。
       与数字原生企业不同,非数字原生企业在成立之时,基本都是以物理世界为中心来构建的。绝大部分企业在创建的时候,是围绕生产、流通、服务等具体的经济活动展开的,天然缺乏以软件和数据平台为核心的数字世界入口,这也就造成了非数字原生企业与数字原生企业之间的显著差异。所以在数字化转型过程中,非数字原生企业面临着更大的挑战。

1、 业态特征:产业链条长、多业态并存

非数字原生企业,特别是大中型生产企业,往往有较长的业务链路,从研发到销售全产业链覆盖。
华为公司在构建面向客户价值流的过程中,同样形成了从研发到销售、供应、交付、运维的长链条,同时产品类型包括电信基站、服务器、CPU、电脑、手机、耳机等,横跨多个产业。这在某种程度上造成了各条块分割、业务组织强势、变革困难、变革复杂度极高等问
题。

2、运营环境:数据交互和共享风险高

非数字原生企业,特别是注重实物生产、交易的大中型企业,还面临着场景复杂的特点,比如交易复杂、风险周期长、内外部风险多等。
华为公司的服务对象从运营商、企业客户到个人消费者,服务范围和雇员遍布全球100多个国家和地区,需要严格遵守各个国家和地区
的进出口管制措施、环保条例、安全隐私法规等。这些业务形态上的特点,导致包括华为在内的诸多非数字原生企业对数据共享(特别是
生产、销售侧数据的对外共享)有更多顾虑,更容易形成客观上的“数据孤岛”。

3、 IT建设过程:数据复杂、历史包袱重

非数字原生企业普遍有较长的历史,组织架构和人员配置都围绕着线下业务开展,大都经历过信息化过程。很多制造型企业随着不同
阶段的发展需求,保留着各个版本的ERP软件和各种不同类型的数据库存储环境,导致数据来源多样,独立封装和存储的数据难以集中共享,也不敢随意改造或替换,IT系统历史包袱沉重。
目前,华为公司的主业务流程中存在几千个系统模块,有多版本的ERP、多种集成方式,系统间存在大量复杂的集成和嵌套。各业务领域开发了上千个应用系统模块,包含上百万张物理表、几千万个字段,这些数据又分别存储在上千个不同数据库中,共享困难;数据链路呈“长网”状,典型链路达12层以上,部分链路甚至高达22层。

4、 数据质量:数据可信和一致化的要求程度高

基于业务特征和运营环境的特点,非数字原生企业对数据生成质量有更高的要求。数据产生时的质量高低不仅直接影响产品质量,而且直接影响整个内部业务的运作效率和成本。例如,华为公司会对合同录入质量进行严格度量和控制,以确保下游各环节能够及时、准确、完整地获得所需数据,并在整个端到端链条中对异常数据进行严格监控。数据质量要求严格,需要配置多重精确规则,基于客观事实多重校验,确保数据可信、一致。
非数字原生企业在消费数据时对数据质量的要求也更高,一般会更聚焦于与业务流程相关的特定场景,更关注业务流程中问题的根因和偏差,数据挖掘、推理、人工智能都会聚焦于对业务的理解,面向业务去做定制化、精细化的算法管理,因此消费数据时的质量容错空间非常小。
     上面所列出的非数字原生企业的特点,是我们基于华为的发展和对行业的认知所总结的,包括对非数字原生企业存在的问题和历史包袱等的表述,只是管中窥豹。

相关文章:

【华为数据之道学习笔记】非数字原生企业的特点

非数字原生企业的数字化转型挑战 软件和数据平台为核心的数字世界入口,便捷地获取和存储了大量的数据,并开始尝试通过机器学习等人工智能技术分析这些数据,以便更好地理解用户需求,增强数字化创新能力。部分数字原生企业引领着云计…...

Kubernetes学习笔记-Part.01 Kubernets与docker

目录 Part.01 Kubernets与docker Part.02 Docker版本 Part.03 Kubernetes原理 Part.04 资源规划 Part.05 基础环境准备 Part.06 Docker安装 Part.07 Harbor搭建 Part.08 K8s环境安装 Part.09 K8s集群构建 Part.10 容器回退 第一章 Kubernets与docker Docker是一种轻量级的容器…...

k8s学习

文章目录 前言一、k8s部署方式二、学习k8s的方式今天主要配置k8s环境的方式今天遇到的是一个在k8s进行初始化的方式,但是发现k8s不能正常初始化总是出现错误,或者在错误中有问题的方式,在网上查询挺多资料需要重新启动kub文件,删除…...

测试:JMeter和LoadRunner比较

比较 JMeter和LoadRunner是两款常用的软件性能测试工具,它们在功能和性能上有一定的相似性和差异。下面从几个方面对它们进行比较: 1. 架构和原理: JMeter和LoadRunner的架构和原理基本相同,都是通过中间代理监控和收集并发客户…...

(C语言)通过循环按行顺序为一个矩阵赋予1,3,5,7,9,等奇数,然后输出矩阵左下角的值。

#include<stdio.h> int main() {int a[5][5];int n 1;for(int i 0;i < 5;i ){for(int j 0;j < 5;j ){a[i][j] n;n 2;}}for(int i 0;i < 5;i ){for(int j 0;j < i;j )printf("%-5d",a[i][j]);printf("\n");}return 0; } 运行截图…...

GitHub项目推荐-Deoldify

有小伙伴推荐了一个老照片上色的GitHub项目&#xff0c;看了简介&#xff0c;还不错&#xff0c;推荐给大家。 项目地址 GitHub - SpenserCai/sd-webui-deoldify: DeOldify for Stable Diffusion WebUI&#xff1a;This is an extension for StableDiffusions AUTOMATIC1111 w…...

微前端qiankun示例 Umi3.5

主应用配置&#xff08;基座&#xff09; 安装包 npm i umijs/plugin-qiankun -D 配置 qiankun 开启 {"private": true,"scripts": {"start": "umi dev","build": "umi build","postinstall": "…...

熬夜会秃头——beta冲刺Day7

这个作业属于哪个课程2301-计算机学院-软件工程社区-CSDN社区云这个作业要求在哪里团队作业—beta冲刺事后诸葛亮-CSDN社区这个作业的目标记录beta冲刺Day7团队名称熬夜会秃头团队置顶集合随笔链接熬夜会秃头——Beta冲刺置顶随笔-CSDN社区 一、团队成员会议总结 1、成员工作…...

IntelliJ IDEA设置中文界面

1.下载中文插件 2. 点击重启IDE 3.问题就解决啦&#xff01;...

RTSP流媒体播放器

rtsp主要还是运用ffmpeg来搭建node后端转发到前端&#xff0c;前端再播放这样的思路。 这里讲的到是用两种方式&#xff0c;一种是ffmpeg设置成全局来实现&#xff0c;一种是ffmpeg放在本地目录用相对路径来引用的方式。 ffmpeg下载地址&#xff1a;http://www.ffmpeg.org/do…...

使用正则表达式时-可能会导致性能下降的情况

目录 前言 正则表达式引擎 NFA自动机的回溯 解决方案 前言 正则表达式是一个用正则符号写出的公式&#xff0c;程序对这个公式进行语法分析&#xff0c;建立一个语法分析树&#xff0c;再根据这个分析树结合正则表达式的引擎生成执行程序(这个执行程序我们把它称作状态机&a…...

Maven生命周期

Maven生命周期 通过IDEA工具的辅助&#xff0c;能很轻易看见Maven的九种生命周期命令&#xff0c;如下&#xff1a; 双击其中任何一个&#xff0c;都会执行相应的Maven构建动作&#xff0c;为啥IDEA能实现这个功能呢&#xff1f;道理很简单&#xff0c;因为IDEA封装了Maven提供…...

深度学习(五):pytorch迁移学习之resnet50

1.迁移学习 迁移学习是一种机器学习方法&#xff0c;它通过将已经在一个任务上学习到的知识应用到另一个相关任务上&#xff0c;来改善模型的性能。迁移学习可以解决数据不足或标注困难的问题&#xff0c;同时可以加快模型的训练速度。 迁移学习的核心思想是将源领域的知识迁…...

面试官:说说synchronized与ReentrantLock的区别

程序员的公众号&#xff1a;源1024&#xff0c;获取更多资料&#xff0c;无加密无套路&#xff01; 最近整理了一波电子书籍资料&#xff0c;包含《Effective Java中文版 第2版》《深入JAVA虚拟机》&#xff0c;《重构改善既有代码设计》&#xff0c;《MySQL高性能-第3版》&…...

数据结构学习笔记——广义表

目录 一、广义表的定义二、广义表的表头和表尾三、广义表的深度和长度四、广义表与二叉树&#xff08;一&#xff09;广义表表示二叉树&#xff08;二&#xff09;广义表表示二叉树的代码实现 一、广义表的定义 广义表是线性表的进一步推广&#xff0c;是由n&#xff08;n≥0&…...

为什么每次optimizer.zero_grad()

当你训练一个神经网络时&#xff0c;每一次的传播和参数更新过程可以被分解为以下步骤&#xff1a; 1前向传播&#xff1a;网络对输入数据进行操作&#xff0c;最终生成输出。这个过程会基于当前的参数&#xff08;权重和偏差&#xff09;计算出一个或多个损失函数的值。 2计…...

一个页面从输入 URL 到页面加载显示完成,这个过程中都发生了什么

一个页面从输入URL到加载显示完成经历了以下过程&#xff1a; DNS解析&#xff1a;浏览器会解析URL中的域名&#xff0c;将其转换为对应的IP地址。如果浏览器缓存中存在该域名的IP地址&#xff0c;则跳过DNS解析步骤。 建立TCP连接&#xff1a;通过解析得到的IP地址&#xff0…...

iOS ------ UICollectionView

一&#xff0c;UICollectionView的简介 UICollectionView是iOS6之后引入的一个新的UI控件&#xff0c;它和UITableView有着诸多的相似之处&#xff0c;其中许多代理方法都十分类似。简单来说&#xff0c;UICollectionView是比UITbleView更加强大的一个UI控件&#xff0c;有如下…...

ElasticSearch知识体系详解

1.介绍 ElasticSearch是基于Lucene的开源搜索及分析引擎&#xff0c;使用Java语言开发的搜索引擎库类&#xff0c;并作为Apache许可条款下的开放源码发布&#xff0c;是当前流行的企业级搜索引擎。 它可以被下面这样准确的形容&#xff1a; 一个分布式的实时文档存储&#xf…...

Linux自启服务提示:systemd[1]: *.service: main process exited, code=exited, status=1问题

这两天一直在沉迷于配脚本&#xff0c;由于服务器很多&#xff0c;所以我都是从一台服务器上配置好的脚本直接copy到另一台服务器&#xff0c;按说完全一样的脚本一样的操作&#xff0c;那么应该是一样的执行结果 but, Gul’dan&#xff0c;代…我重启服务器后服务并没有正常启…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

Unity中的transform.up

2025年6月8日&#xff0c;周日下午 在Unity中&#xff0c;transform.up是Transform组件的一个属性&#xff0c;表示游戏对象在世界空间中的“上”方向&#xff08;Y轴正方向&#xff09;&#xff0c;且会随对象旋转动态变化。以下是关键点解析&#xff1a; 基本定义 transfor…...

Visual Studio Code 扩展

Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后&#xff0c;命令 changeCase.commands 可预览转换效果 EmmyLua…...

Vue3 PC端 UI组件库我更推荐Naive UI

一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用&#xff0c;前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率&#xff0c;还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库&#xff08;Naive UI、Element …...