当前位置: 首页 > news >正文

Python实现FA萤火虫优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , 作为最新的群智能优化算法之一,该算法具有更好的收敛速度和收敛精度,且易于工程实现等优点。

本项目通过FA萤火虫优化算法寻找最优的参数值来优化BP神经网络回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

   

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:  

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:    

4.探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建FA萤火虫优化算法优化BP神经网络回归模型

主要使用FA萤火虫优化算法优化BP神经网络回归算法,用于目标回归。

6.1 FA萤火虫优化算法寻找的最优参数   

最优参数:

   

6.2 最优参数值构建模型

编号

模型名称

参数

1

BP神经网络回归模型

units=best_units

2

epochs=best_epochs

6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失曲线图

  

7.模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

模型名称

指标名称

指标值

测试集

BP神经网络回归模型

  R方

0.9981

均方误差

83.9278

可解释方差值

0.9981

平均绝对误差

7.1938

从上表可以看出,R方0.9981,为模型效果较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。   

8.结论与展望

综上所述,本文采用了FA萤火虫优化算法寻找BP神经网络回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。  

# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:链接:https://pan.baidu.com/s/16owZ0LNw0crU_Uu-vHVeLQ 
提取码:kwis

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


 

相关文章:

Python实现FA萤火虫优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , …...

灯塔ARL-NPoC全面教程

灯塔ARL-NPoC全面教程 1.ARL-NPoC2.安装3.参数解析4.ARL-NPoC编写指南标准POC模板`__init()__`verifyexploit_cmd5.将指纹同步到远程Web服务器1.ARL-NPoC 最新版的arl增加了poc编写与探测的功能,ARL-NPoC是一个集漏洞验证和任务运行的一个框架 2.安装 ARL-NPoC下载地址 下载…...

λ表达式、智能指针

lambda 表达式 1、C11标准支持,实现匿名函数的功能; 2、通常用于实现轻量级的函数 格式 mutable->返回值{函数体}; // 返回值即使是 void 也必须得写 [] 内,可以填外部数据; () 内,可以带有参数列表。 lambda 表达…...

PHP基础知识和操作

PHP在线运行 https://c.runoob.com/compile/1/ https://www.sotool.net/php80 将驼峰字符串转化为蛇形字符串 <?phpfunction CamelToSnake($camelValue) {$initValue preg_replace(/\s/u, , $camelValue);$snakeValue strtolower(preg_replace(/(.)(?[A-Z])/u, &quo…...

系列十三、SpringBoot的自动配置原理分析

一、概述 我们知道Java发展到现在功能十分的强大&#xff0c;生态异常的丰富&#xff0c;这里面离开不了Spring及其家族产品的支持&#xff0c;而作为Spring生态的明星产品Spring Boot可以说像王者一般的存在&#xff0c;那么的耀眼&#xff0c;那么的光彩夺目&#xff01;那么…...

soapui报错: CXF directory must be set in global preferences

文章目录 下载官网下载网盘下载 配置 soapui生成代码时报错 CXF directory must be set in global preferences 下载 需要下载apache-cxf。 官网下载 官网地址&#xff1a; https://www.apache.org/dyn/closer.lua/cxf/3.5.4/apache-cxf-3.5.4.zip 点如下地址即可。 The obj…...

Netty02-基础概念

什么是netty ​ Netty是一个基于Java NIO的异步事件驱动网络应用程序框架。它提供了简单易用的API&#xff0c;用于快速开发可维护的高性能网络应用程序。Netty的设计目标是提供一种高度可扩展的、高性能的网络应用程序框架&#xff0c;使得开发人员能够轻松地构建各种类型的网…...

计算机毕业设计 基于SpringBoot的敬老院管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…...

精调llama模型

github地址&#xff1a;https://github.com/facebookresearch/llama-recipes github:https://github.com/facebookresearch/llama import torch from transformers import LlamaForCausalLM, LlamaTokenizer#model_id"./models_hf/7B" # 可以从huggingface上面下载模…...

【C语言】深入理解C语言中的数学运算和类型转换

文章目录 引言取负运算的奥秘源码探索分析与解读 浮点数运算的精细差异源码分析精度损失与隐式类型转换 精度和除零运算探究float类型和double类型的精度各是多少&#xff08;即十进制有效位的位数&#xff09;&#xff1f;在你的机器上&#xff0c;“负数开方”是如何处理的&a…...

基于javaweb的宠物服务商城系统设计与开发

摘 要 最近几年以来&#xff0c;宠物在人们的日常生活中所占的地位越来越重要了&#xff0c;它们不仅仅是我们的朋友&#xff0c;也成为了我们家庭中的一份子。21世纪&#xff0c;信息技术飞速发展&#xff0c;计算机行业日新月异&#xff0c;极大地带动了信息的流动&#xff…...

LeetCode-470. 用 Rand7() 实现 Rand10()【数学 拒绝采样 概率与统计 随机化】

LeetCode-470. 用 Rand7 实现 Rand10【数学 拒绝采样 概率与统计 随机化】 题目描述&#xff1a;解题思路一&#xff1a;首先说一个结论就是(rand_X() - 1) Y rand_Y() > [1,X*Y]&#xff0c;即可以等概率的生成[1, X * Y]范围的随机数&#xff0c;其实就像军训的时候报数…...

通达信指标公式19:龙虎榜股票池——主力控盘度的计算方法

0.小红牛本指标&#xff0c;选股的思路说明&#xff1a;控盘度&#xff0c;又称主力控盘&#xff0c;是指主力控制了某只股票的大部分流通股&#xff0c;从而控制了股票的价格。主力控盘的目的通常是为了获取更多的收益&#xff0c;通过控制股票价格来实现其策略。所以首要分析…...

手搓图片滑动验证码_JavaScript进阶

手搓图片滑动验证码 背景代码效果图展示网站 背景 在做前端项目开发的时候&#xff0c;少不了登录注册部分&#xff0c;既然有登录注册就少不了机器人验证&#xff0c;验证的方法有很多种&#xff0c;比如短信验证码、邮箱验证码、图片滑动、图片验证码等。 由于鄙人在开发中…...

Linux服务器超级实用的脚本

1.使用INOTIFY+RSYNC自动实时同步数据 代码执行: bash inotify_rsyncs.sh :cat inotify_rsyncs.sh 脚本内容如下: #!bing/bash # Author: reyn #检测/data路径下的文件变化,排除Temp目录 INOTIFY_CMD="inotifywait -mrq -e modify,create,move,delete /data/ --exc…...

IntelliJ IDEA安装使用教程#intellij idea

做为基础开发软件&#xff0c;idea、pycharm、phpstorm是高级企业级开发中常用的图形化工具。 安装非常简单&#xff1a;去官网下载即可&#xff0c;有社区版本、有企业版本&#xff1a; IntelliJ IDEA – 领先的 Java 和 Kotlin IDE 因版权问题&#xff1a;这里不方面多讲。…...

【组合数学】容斥鸽巢原理

目录 1. 容斥原理容斥原理三种形式 2. 容斥原理应用有限重复数的多重集合的 r 组合数错排问题 3. 鸽巢原理4. Ramsey 定理 1. 容斥原理 容斥原理提供了一种通过计算每个单独集合的大小&#xff0c;然后修正重复计数的方法&#xff0c;从而得到多个集合并集大小的计算方法。它通…...

视频后期特效处理软件 Motion 5 mac中文版

Motion mac是一款运动图形和视频合成软件&#xff0c;适用于Mac OS平台。 Motion mac软件特点 - 精美的效果&#xff1a;Motion提供了多种高质量的运动图形和视频效果&#xff0c;例如3D效果、烟雾效果、粒子效果等&#xff0c;方便用户制作出丰富多彩的视频和动画。 - 高效的工…...

【智能家居】一、工厂模式实现继电器灯控制

用户手册对应的I/O 工厂模式实现继电器灯控制 代码段 controlDevice.h&#xff08;设备设备&#xff09;main.c&#xff08;主函数&#xff09;bathroomLight.c&#xff08;浴室灯&#xff09;bedroomLight.c&#xff08;卧室灯&#xff09;restaurantLight.c&#xff08;餐厅…...

第三节:提供者、消费者、Eureka

一、 提供者 消费者&#xff08;就是个说法、定义&#xff0c;以防别人叭叭时听不懂&#xff09; 服务提供者&#xff1a;业务中被其他微服务调用的服务。&#xff08;提供接口给其他服务调用&#xff09;服务消费者&#xff1a;业务中调用其他微服务的服务。&#xff08;调用…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...