Python实现FA萤火虫优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。


1.项目背景
萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , 作为最新的群智能优化算法之一,该算法具有更好的收敛速度和收敛精度,且易于工程实现等优点。
本项目通过FA萤火虫优化算法寻找最优的参数值来优化BP神经网络回归模型。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
| 编号 | 变量名称 | 描述 |
| 1 | x1 | |
| 2 | x2 | |
| 3 | x3 | |
| 4 | x4 | |
| 5 | x5 | |
| 6 | x6 | |
| 7 | x7 | |
| 8 | x8 | |
| 9 | x9 | |
| 10 | x10 | |
| 11 | y | 因变量 |
数据详情如下(部分展示):

3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:

3.3 数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析
4.1 y变量直方图
用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。
4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:

5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:
![]()
6.构建FA萤火虫优化算法优化BP神经网络回归模型
主要使用FA萤火虫优化算法优化BP神经网络回归算法,用于目标回归。
6.1 FA萤火虫优化算法寻找的最优参数
最优参数:
6.2 最优参数值构建模型
| 编号 | 模型名称 | 参数 |
| 1 | BP神经网络回归模型 | units=best_units |
| 2 | epochs=best_epochs |
6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失曲线图
7.模型评估
7.1 评估指标及结果
评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。
| 模型名称 | 指标名称 | 指标值 |
| 测试集 | ||
| BP神经网络回归模型 | R方 | 0.9981 |
| 均方误差 | 83.9278 | |
| 可解释方差值 | 0.9981 | |
| 平均绝对误差 | 7.1938 | |
从上表可以看出,R方0.9981,为模型效果较好。
关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。
8.结论与展望
综上所述,本文采用了FA萤火虫优化算法寻找BP神经网络回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。
# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:链接:https://pan.baidu.com/s/16owZ0LNw0crU_Uu-vHVeLQ
提取码:kwis
更多项目实战,详见机器学习项目实战合集列表:
机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客
相关文章:
Python实现FA萤火虫优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , …...
灯塔ARL-NPoC全面教程
灯塔ARL-NPoC全面教程 1.ARL-NPoC2.安装3.参数解析4.ARL-NPoC编写指南标准POC模板`__init()__`verifyexploit_cmd5.将指纹同步到远程Web服务器1.ARL-NPoC 最新版的arl增加了poc编写与探测的功能,ARL-NPoC是一个集漏洞验证和任务运行的一个框架 2.安装 ARL-NPoC下载地址 下载…...
λ表达式、智能指针
lambda 表达式 1、C11标准支持,实现匿名函数的功能; 2、通常用于实现轻量级的函数 格式 mutable->返回值{函数体}; // 返回值即使是 void 也必须得写 [] 内,可以填外部数据; () 内,可以带有参数列表。 lambda 表达…...
PHP基础知识和操作
PHP在线运行 https://c.runoob.com/compile/1/ https://www.sotool.net/php80 将驼峰字符串转化为蛇形字符串 <?phpfunction CamelToSnake($camelValue) {$initValue preg_replace(/\s/u, , $camelValue);$snakeValue strtolower(preg_replace(/(.)(?[A-Z])/u, &quo…...
系列十三、SpringBoot的自动配置原理分析
一、概述 我们知道Java发展到现在功能十分的强大,生态异常的丰富,这里面离开不了Spring及其家族产品的支持,而作为Spring生态的明星产品Spring Boot可以说像王者一般的存在,那么的耀眼,那么的光彩夺目!那么…...
soapui报错: CXF directory must be set in global preferences
文章目录 下载官网下载网盘下载 配置 soapui生成代码时报错 CXF directory must be set in global preferences 下载 需要下载apache-cxf。 官网下载 官网地址: https://www.apache.org/dyn/closer.lua/cxf/3.5.4/apache-cxf-3.5.4.zip 点如下地址即可。 The obj…...
Netty02-基础概念
什么是netty Netty是一个基于Java NIO的异步事件驱动网络应用程序框架。它提供了简单易用的API,用于快速开发可维护的高性能网络应用程序。Netty的设计目标是提供一种高度可扩展的、高性能的网络应用程序框架,使得开发人员能够轻松地构建各种类型的网…...
计算机毕业设计 基于SpringBoot的敬老院管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解
博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...
精调llama模型
github地址:https://github.com/facebookresearch/llama-recipes github:https://github.com/facebookresearch/llama import torch from transformers import LlamaForCausalLM, LlamaTokenizer#model_id"./models_hf/7B" # 可以从huggingface上面下载模…...
【C语言】深入理解C语言中的数学运算和类型转换
文章目录 引言取负运算的奥秘源码探索分析与解读 浮点数运算的精细差异源码分析精度损失与隐式类型转换 精度和除零运算探究float类型和double类型的精度各是多少(即十进制有效位的位数)?在你的机器上,“负数开方”是如何处理的&a…...
基于javaweb的宠物服务商城系统设计与开发
摘 要 最近几年以来,宠物在人们的日常生活中所占的地位越来越重要了,它们不仅仅是我们的朋友,也成为了我们家庭中的一份子。21世纪,信息技术飞速发展,计算机行业日新月异,极大地带动了信息的流动ÿ…...
LeetCode-470. 用 Rand7() 实现 Rand10()【数学 拒绝采样 概率与统计 随机化】
LeetCode-470. 用 Rand7 实现 Rand10【数学 拒绝采样 概率与统计 随机化】 题目描述:解题思路一:首先说一个结论就是(rand_X() - 1) Y rand_Y() > [1,X*Y],即可以等概率的生成[1, X * Y]范围的随机数,其实就像军训的时候报数…...
通达信指标公式19:龙虎榜股票池——主力控盘度的计算方法
0.小红牛本指标,选股的思路说明:控盘度,又称主力控盘,是指主力控制了某只股票的大部分流通股,从而控制了股票的价格。主力控盘的目的通常是为了获取更多的收益,通过控制股票价格来实现其策略。所以首要分析…...
手搓图片滑动验证码_JavaScript进阶
手搓图片滑动验证码 背景代码效果图展示网站 背景 在做前端项目开发的时候,少不了登录注册部分,既然有登录注册就少不了机器人验证,验证的方法有很多种,比如短信验证码、邮箱验证码、图片滑动、图片验证码等。 由于鄙人在开发中…...
Linux服务器超级实用的脚本
1.使用INOTIFY+RSYNC自动实时同步数据 代码执行: bash inotify_rsyncs.sh :cat inotify_rsyncs.sh 脚本内容如下: #!bing/bash # Author: reyn #检测/data路径下的文件变化,排除Temp目录 INOTIFY_CMD="inotifywait -mrq -e modify,create,move,delete /data/ --exc…...
IntelliJ IDEA安装使用教程#intellij idea
做为基础开发软件,idea、pycharm、phpstorm是高级企业级开发中常用的图形化工具。 安装非常简单:去官网下载即可,有社区版本、有企业版本: IntelliJ IDEA – 领先的 Java 和 Kotlin IDE 因版权问题:这里不方面多讲。…...
【组合数学】容斥鸽巢原理
目录 1. 容斥原理容斥原理三种形式 2. 容斥原理应用有限重复数的多重集合的 r 组合数错排问题 3. 鸽巢原理4. Ramsey 定理 1. 容斥原理 容斥原理提供了一种通过计算每个单独集合的大小,然后修正重复计数的方法,从而得到多个集合并集大小的计算方法。它通…...
视频后期特效处理软件 Motion 5 mac中文版
Motion mac是一款运动图形和视频合成软件,适用于Mac OS平台。 Motion mac软件特点 - 精美的效果:Motion提供了多种高质量的运动图形和视频效果,例如3D效果、烟雾效果、粒子效果等,方便用户制作出丰富多彩的视频和动画。 - 高效的工…...
【智能家居】一、工厂模式实现继电器灯控制
用户手册对应的I/O 工厂模式实现继电器灯控制 代码段 controlDevice.h(设备设备)main.c(主函数)bathroomLight.c(浴室灯)bedroomLight.c(卧室灯)restaurantLight.c(餐厅…...
第三节:提供者、消费者、Eureka
一、 提供者 消费者(就是个说法、定义,以防别人叭叭时听不懂) 服务提供者:业务中被其他微服务调用的服务。(提供接口给其他服务调用)服务消费者:业务中调用其他微服务的服务。(调用…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
