变分推断 (Variational Inference) 解析
前言
如果你对这篇文章可感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。
变分推断
在贝叶斯方法中,针对含有隐变量的学习和推理,通常有两类方式,其一是马尔可夫链蒙特卡罗法 (MCMC),其通过采样来近似估计后验概率分布;其二是变分推断,通过解析的方法近似计算后验概率分布。
假设联合概率分布 p(x,z)p(x,z)p(x,z),其中 xxx 是观测变量,即数据,zzz 是隐变量,目标是学习后验概率分布 p(z∣x)p(z\mid x)p(z∣x)。
由于 p(z∣x)p(z\mid x)p(z∣x) 通常非常复杂,难以直接求解,因此变分推断使用分布 q(z)q(z)q(z) 来近似 p(z∣x)p(z\mid x)p(z∣x),并通过限制 q(z)q(z)q(z) 形式,得到一种局部最优、但具有确定解的近似后验分布。其中 q(z)q(z)q(z) 即为变分分布 (variational distribution),q(z)q(z)q(z) 与 p(z∣x)p(z\mid x)p(z∣x) 之间的相似度通过 KL\text{KL}KL 散度衡量。
如下图所示,我们希望在集合 Q\mathcal{Q}Q 中找到 q∗(z)q^*(z)q∗(z) 使其与 p(z∣x)p(z\mid x)p(z∣x) 之间的 KL\text{KL}KL 散度尽可能小。

基于上述想法,对 KL(q(z)∥p(z∣x))\text{KL}(q(z)\|p(z\mid x))KL(q(z)∥p(z∣x)) 进行拆解:
KL(q(z)∥p(z∣x))=∫q(z)logq(z)dz−∫q(z)logp(z∣x)dz=logp(x)−{∫q(z)logp(x,z)dz−∫q(z)logq(z)dz}=logp(x)−Eq[logp(x,z)−logq(z)].\begin{aligned} \text{KL}(q(z)\| p(z\mid x)) &= \int q(z) \log q(z) \text{d} z - \int q(z) \log p(z\mid x) \text{d} z \\ &= \log p(x) - \left\{\int q(z) \log p(x,z) \text{d} z - \int q(z) \log q(z) \text{d} z\right\} \\ &= \log p(x) - \mathbb{E}_q\left[\log p(x,z)-\log q(z)\right]. \end{aligned} KL(q(z)∥p(z∣x))=∫q(z)logq(z)dz−∫q(z)logp(z∣x)dz=logp(x)−{∫q(z)logp(x,z)dz−∫q(z)logq(z)dz}=logp(x)−Eq[logp(x,z)−logq(z)].
由于 KL\text{KL}KL 散度非负,因此:
logp(x)≥Eq[logp(x,z)−logq(z)].\log p(x) \geq \mathbb{E}_q\left[\log p(x,z)-\log q(z)\right]. logp(x)≥Eq[logp(x,z)−logq(z)].
不等式左端为证据 (Evidence),右端则为证据下界 (Evidence Lower Bound, ELBO\text{ELBO}ELBO),记作 L(q)L(q)L(q)(ELBO 经常出现于各类与贝叶斯有关的文章中)。
我们的目的是求解 q(z)q(z)q(z) 来最小化 KL(q(z)∥p(z∣x))\text{KL}(q(z)\| p(z\mid x))KL(q(z)∥p(z∣x)),由于 logp(x)\log p(x)logp(x) 是常量,问题转化为最大化 ELBO\text{ELBO}ELBO L(q)L(q)L(q).
若 q(z)q(z)q(z) 形式过于复杂,最大化 ELBO\text{ELBO}ELBO 依然难以求解,因此通常会对 q(z)q(z)q(z) 形式进行约束,一种常见的方式是假设 zzz 服从分布
q(z)=∏iqi(zi),q(z)=\prod_{i} q_i(z_i), q(z)=i∏qi(zi),
即 zzz 可拆解为一系列相互独立的 ziz_izi,此时的变分分布称为平均场 (Mean Filed).
总结一下,变分推断常见步骤如下:
- 定义变分分布 q(z)q(z)q(z);
- 推导证据下界 ELBO\text{ELBO}ELBO 表达式;
- 最大化 ELBO\text{ELBO}ELBO,得到 q∗(z)q^*(z)q∗(z),作为后验概率分布 p(z∣x)p(z\mid x)p(z∣x) 的近似。
广义 EM
上述变分推断过程可以与「广义 EM」联系起来,由于 logp(x)≥ELBO\log p(x)\geq \text{ELBO}logp(x)≥ELBO 恒成立,若将模型参数 θ\thetaθ 引入其中,即可得到:
logp(x∣θ)≥Eq[logp(x,z∣θ)−logq(z)],\log p(x\mid \theta) \geq \mathbb{E}_q\left[\log p(x,z\mid \theta)-\log q(z)\right], logp(x∣θ)≥Eq[logp(x,z∣θ)−logq(z)],
此时有两种理解:
- 用分布 q(z)q(z)q(z) 近似联合概率分布 p(x,z∣θ)p(x,z\mid \theta)p(x,z∣θ),最小化分布距离 KL(q∥p)\text{KL}(q\|p)KL(q∥p);
- 采用极大似然估计的思想,最大化对数似然函数 logp(x∣θ)\log p(x\mid \theta)logp(x∣θ)(也可以理解为最大化证据)。
虽然两种视角不同,但结论一致,即最大化 ELBO\text{ELBO}ELBO,记作 L(q,θ)L(q,\theta)L(q,θ)。对应于广义 EM 算法,即采用迭代的方式,循环执行 E 步和 M 步,直至收敛:
- 【E 步】固定 θ\thetaθ,求 L(q,θ)L(q,\theta)L(q,θ) 对 qqq 的最大化;
- 【M 步】固定 qqq,求 L(q,θ)L(q,\theta)L(q,θ) 对 θ\thetaθ 的最大化。
上述迭代可以保证 logp(x∣θ(t))\log p(x\mid \theta^{(t)})logp(x∣θ(t)) 不降,即一定会收敛,但可能会收敛到局部最优:
logp(x∣θ(t−1))=L(q(t),θ(t−1))≤L(q(t),θ(t))≤logp(x∣θ(t))\log p(x \mid \theta^{(t-1)})=L(q^{(t)}, \theta^{(t-1)}) \leq L(q^{(t)}, \theta^{(t)}) \leq \log p(x \mid \theta^{(t)}) logp(x∣θ(t−1))=L(q(t),θ(t−1))≤L(q(t),θ(t))≤logp(x∣θ(t))
其中「左边第一个等号」由变分推断原理 + E 步得到,「左边第一个不等号」由 M 步得到,「左边第二个不等号」由变分推断原理得到。
参考资料
- 周志华. (2016). 机器学习. 清华大学出版社, 北京.
- 李航. (2019). 统计学习方法. 清华大学出版社, 第 2 版, 北京.
相关文章:
变分推断 (Variational Inference) 解析
前言 如果你对这篇文章可感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。 变分推断 在贝叶斯方法中,针对含有隐变量的学习和推理,通常有两类方式,其一是马尔可…...
27. 移除元素
题目链接:https://leetcode.cn/problems/remove-element/给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输…...
hive临时目录清理
hive运行失败会导致临时目录无法自动清理,因此需要自己写脚本去进行清理 实际发现hive临时目录有两个: /tmp/hive/{user}/* /warehouse/tablespace//hive/**/.hive-staging_hive 分别由配置hive.exec.scratchdir和hive.exec.stagingdir决定: 要注意的…...
如何创建发布新品上市新闻稿
推出新产品对任何企业来说都是一个激动人心的时刻,但向潜在客户宣传并围绕您的新产品引起轰动也可能是一个挑战。最有效的方法之一就是通过发布新品上市新闻稿。精心制作的新闻稿可以帮助我们通过媒体报道、吸引并在目标受众中引起关注。下面,我们将讲述…...
关于.bashrc和setup.bash的理解
在创建了ROS的workspace后,需要将workspace中的setup.bash文件写入~/.bashrc 文件中,让其启动: source /opt/ros/melodic/setup.bash这句话的目的就是在开新的terminal的时候,运行这个setup.bash,而这个setup.bash的作…...
03 Android基础--fragment
03 Android基础--fragment什么是fragment?fragment生命周期?动态的fragment与静态的fragmentfragment常用的两个类与APIFragment与Activity通信什么是fragment? 碎片,一个activity中可以使用多个fragment,可以把activi…...
Redis使用,AOF、RDB
前言 如果有人问你:"你会把 Redis 用在什么业务场景下?" 我想你大概率会说:"我会把它当作缓存使用,因为它把后端数据库中的数据存储在内存中,然后直接从内存中读取数据,响应速度会非常快。…...
SOLIDWORKS Premium 2023 SP1.0 三维设计绘图软件
SOLIDWORKS 中文完美正式版提供广泛工具来处理最复杂的问题,并提供深层技术完成关键细节工作。新功能可助您改善产品开发流程,以更快地将创新产品投入生产。Solidworks 是达索公司最新推出的三维CAD系统,它可让设计师大大缩短产品的设计时间,让产品得以快速、高效地投向市场…...
PyQGIS开发--自动化地图布局案例
前言创建地图布局是 GIS 作业结束时的一项常见任务。 它用于呈现最终结果的输出,作为与用户交流的一种方式,以便从地图中获取信息、知识或见解。 在包括 QGIS 在内的任何 GIS 软件中制作地图布局都非常容易。 但另一方面,当我们必须生成如此大…...
严格模式和非严格模式下的this指向问题
一、全局环境 1.函数调用 非严格模式:this指向是Window // 普通函数 function fn () { console.log(this, this); } fn() // 自执行函数 (function fn () { console.log(this, this); })() 严格模式:this指向是undefined //…...
vue2、vue3组件传值,引用类型,对象数组如何处理
vue2、vue3组件传值,引用类型,对象数组如何处理 Excerpt 所有的 prop 都使得其父子 prop 之间形成了一个单向下行绑定:父级 prop 的更新会向下流动到子组件中,但是反过来则不行。这样会防止从子组件意外变更父… 下述组件传值指引…...
165. 小猫爬山
Powered by:NEFU AB-IN Link 文章目录165. 小猫爬山题意思路代码165. 小猫爬山 题意 翰翰和达达饲养了 N只小猫,这天,小猫们要去爬山。 经历了千辛万苦,小猫们终于爬上了山顶,但是疲倦的它们再也不想徒步走下山了(呜咕…...
ECharts教程(详细)
ECharts教程(详细) 非常全面的ECharts教程,非常全面的ECharts教程,目前线条/节点颜色、线条粗细、线条样式、线条阴影、线条平滑、线条节点大小、线条节点阴影、线条节点边框、线条节点边框阴影、工具提醒、工具提醒样式、工具自定义提醒、工具提醒背景…...
pinia
目录一、介绍二、快速上手1.安装2.基本使用与state3.actions的使用4.getters的使用5.storeToRefs的使用6.pinia模块化三、数据持久化1.安装2.使用插件3.模块开启持久化4.按需缓存模块的数据一、介绍 pinia从使用角度和之前Vuex几乎是一样的,比Vuex更简单了。 在Vu…...
mysql中insert语句的五种用法
文章目录前言一、values参数后单行插入二、values参数后多行插入三、搭配select插入数据四、复制旧表的信息到新表五、搭配set插入数据总结前言 insert语句是标准sql中的语法,是插入数据的意思。在实际应用中,它也演变了很多种用法来实现特殊的功能&…...
YOLOV7模型调试记录
先前的YOLOv7模型是pytorch重构的,并非官方提供的源码,而在博主使用自己的数据集进行实验时发现效果并不理想,因此生怕是由于源码重构导致该问题,此外还需进行对比实验,因此便从官网上下载了源码,进行调试运…...
模拟光伏不确定性——拉丁超立方抽样生成及缩减场景(Matlab全代码)
光伏出力的不确定性主要源于预测误差,而研究表明预测误差(e)服从正态分布且大概为预测出力的10%。本代码采用拉丁超立方抽样实现场景生成[1,2]、基于概率距离的快速前代消除法实现场景缩减[3],以此模拟了光伏出力的不确定性。与风电不确定性模拟不同之处在于——光伏存在0出…...
Elasticsearch聚合查询速览
Es 数据分析工具 - Elasticsearch Aggregations (聚合查询) 官方文档 Aggregations | Elasticsearch Guide [7.15] | Elastic 1. Bucket aggregations 桶聚合 that group documents into buckets, also called bins, based on field values, ranges, o…...
CEC2017:鱼鹰优化算法(Osprey optimization algorithm,OOA)求解cec2017(提供MATLAB代码)
一、鱼鹰优化算法简介 鱼鹰优化算法(Osprey optimization algorithm,OOA)由Mohammad Dehghani 和 Pavel Trojovsk于2023年提出,其模拟鱼鹰的捕食行为。 鱼鹰是鹰形目、鹗科、鹗属的仅有的一种中型猛禽。雌雄相似。体长51-64厘米…...
Vue3 企业级项目实战:通关 Vue3 企业级项目开发,升职加薪快人一步
Vue3 企业级项目实战 - 程序员十三 - 掘金小册Vue3 Element Plus Spring Boot 企业级项目开发,升职加薪,快人一步。。「Vue3 企业级项目实战」由程序员十三撰写,2744人购买https://s.juejin.cn/ds/S2RkR9F/ 课程介绍 很高兴为大家介绍这个…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...
【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...
Vue3 PC端 UI组件库我更推荐Naive UI
一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用,前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率,还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库(Naive UI、Element …...
如何把工业通信协议转换成http websocket
1.现状 工业通信协议多数工作在边缘设备上,比如:PLC、IOT盒子等。上层业务系统需要根据不同的工业协议做对应开发,当设备上用的是modbus从站时,采集设备数据需要开发modbus主站;当设备上用的是西门子PN协议时…...
