当前位置: 首页 > news >正文

【知识】稀疏矩阵是否比密集矩阵更高效?

转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn]

问题提出

        有些地方说,稀疏图比密集图的计算效率更高,真的吗?

原因猜想

        这里的效率高,应该是有前提的:当使用稀疏矩阵的存储格式(如CSR)时,计算效率更高。如果是普通的完整矩阵格式,实际上效率一样。

        稀疏矩阵的存储格式(如 COO、CSR 或 CSC)直接影响乘法的效率, 一些格式在某些类型的运算中更高效,因为它们可以更快地访问和处理非零元素。因此,当使用了稀疏矩阵存储格式时,如果矩阵非常稀疏(即大多数元素为零),那么使用稀疏矩阵进行矩阵乘法通常会更高效,因为可以跳过大量的零元素乘法操作。

代码验证

import numpy as np
from scipy.sparse import csr_matrix
import time
import matplotlib.pyplot as plt
from tqdm import tqdmdef measure_time(matrix_size=1000, density=0.1):# 创建密集矩阵dense_matrix = np.random.rand(matrix_size, matrix_size)# 创建普通的稀疏矩阵sparse_matrix = dense_matrix < densitysparse_matrix = sparse_matrix.astype(np.float64)# 将普通的稀疏矩阵转换为CSR格式csr_matrix_sparse = csr_matrix(sparse_matrix)# warmupfor _ in range(5):np.dot(sparse_matrix, sparse_matrix)# 对普通的稀疏矩阵进行矩阵乘法,并计时start_time = time.time()_ = np.dot(sparse_matrix, sparse_matrix)sparse_time = time.time() - start_time# warmupfor _ in range(5):np.dot(dense_matrix, dense_matrix)# 对密集矩阵进行矩阵乘法,并计时start_time = time.time()_ = np.dot(dense_matrix, dense_matrix)dense_time = time.time() - start_time# warmupfor _ in range(5):csr_matrix_sparse.dot(csr_matrix_sparse)# 对CSR格式的稀疏矩阵进行矩阵乘法,并计时start_time = time.time()_ = csr_matrix_sparse.dot(csr_matrix_sparse)csr_time = time.time() - start_timereturn sparse_time, dense_time, csr_time# 矩阵大小范围
sizes = np.arange(10, 1001, 10)
# 记录每种大小下的耗时
times_sparse = []
times_dense = []
times_csr = []
for size in tqdm(sizes):sparse_time, dense_time, csr_time = measure_time(matrix_size=size)times_sparse.append(sparse_time)times_dense.append(dense_time)times_csr.append(csr_time)
# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(sizes, times_sparse, label='sparse')
plt.plot(sizes, times_dense, label='dense')
plt.plot(sizes, times_csr, label='csr')
plt.xlabel('matrix size')
plt.ylabel('time (s)')
plt.title('matrix_size vs time')
plt.legend()
plt.show()# 稀疏度范围
density = np.arange(0, 1, 0.01)
# 记录每种大小下的耗时
times_sparse = []
times_dense = []
times_csr = []
for den in tqdm(density):sparse_time, dense_time, csr_time = measure_time(density=den)times_sparse.append(sparse_time)times_dense.append(dense_time)times_csr.append(csr_time)
# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(density, times_sparse, label='sparse')
plt.plot(density, times_dense, label='dense')
plt.plot(density, times_csr, label='csr')
plt.xlabel('density')
plt.ylabel('time (s)')
plt.title('density vs time')
plt.legend()
plt.show()

        从上图可以看出,随着矩阵大小的增大,三种形式的计算效率都在降低,但两种普通的完整矩阵形式的乘法,其效率的变化趋势是一致的。考虑到时间统计有波动,因此可以看成他俩实际上是一样的时间。

        注意,上图中CSR的计算效率低于其他两者,是因为密集度为0.1。当密集度设置为0.01时,CSR的计算效率就会更高了。

        从这个图可以看到,随着密集度的增加,CSR的效率逐渐变低,但普通的完整矩阵形式的乘法,其效率并没有发生变化。

相关文章:

【知识】稀疏矩阵是否比密集矩阵更高效?

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhang.cn] 问题提出 有些地方说&#xff0c;稀疏图比密集图的计算效率更高&#xff0c;真的吗&#xff1f; 原因猜想 这里的效率高&#xff0c;应该是有前提的&#xff1a;当使用稀疏矩阵的存储格式(如CSR)时&#xff0c;计…...

代码随想Day24 | 回溯法模板、77. 组合

理论基础 回溯法和递归不可分割&#xff0c;回溯法是一种穷举的方法&#xff0c;通常需要剪枝来降低复杂度。回溯法有一个选择并退回的过程&#xff0c;可以抽象为树结构&#xff0c;回溯法的模板如下&#xff1a; void backtracking(参数) {if (终止条件) {存放结果;return;}…...

搜索与回溯算法②

求0-9的数字可以组成的所有k 位数。 def backtrack(start, path, k, n, results):"""核心函数。:param start: 下一个添加的数字的起始位置:param path: 当前构建的路径&#xff0c;代表一个组合:param k: 组合中所需的数字个数:param n: 可选数字的最大值:par…...

Centos图形化界面封装OpenStack Ubuntu镜像

目录 背景 环境 搭建kvm环境 安装ubuntu虚机 虚机设置 系统安装 登录虚机 安装cloud-init 安装cloud-utils-growpart 关闭实例 删除细节信息 删除网卡细节 使虚机脱离libvirt纳管 结束与验证 压缩与转移 验证是否能够正常运行 背景 一般的镜像文件在上传OpenSt…...

使用Jmeter进行http接口测试怎么做?

前言&#xff1a; 本文主要针对http接口进行测试&#xff0c;使用Jmeter工具实现。 Jmter工具设计之初是用于做性能测试的&#xff0c;它在实现对各种接口的调用方面已经做的比较成熟&#xff0c;因此&#xff0c;本次直接使用Jmeter工具来完成对Http接口的测试。 一、开发接…...

创建腾讯云存储桶---上传图片--使用cos-sdk完成上传

创建腾讯云存储桶—上传图片 注册腾讯云账号https://cloud.tencent.com/login 登录成功&#xff0c;选择右边的控制台 点击云产品&#xff0c;选择对象存储 创建存储桶 填写名称&#xff0c;选择公有读&#xff0c;私有写一直下一步&#xff0c;到创建 选择安全管理&#…...

12.3_黑马MybatisPlus笔记(上)

目录 02 03 04 05 06 07 ​编辑 thinking:system.out::println?​编辑 thinking&#xff1a;list.of? 08 thinking&#xff1a;RequestParam和 ApiParam注解使用&#xff1f; thinking&#xff1a;RequestParam 和PathVariable的区别&#xff1f; ​编辑 ​编…...

智能优化算法应用:基于寄生捕食算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于寄生捕食算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于寄生捕食算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.寄生捕食算法4.实验参数设定5.算法结果6.参考…...

全息图着色器插件:Hologram Shaders Pro for URP, HDRP Built-in

8个新的Unity全息图着色器,具有故障效果,扫描线,网格线,和更多其他效果!与所有渲染管线兼容。 软件包添加了一系列的全息图着色器到Unity。从基本的全息图与菲涅耳亮点,先进的全息图与两种故障效应,扫描线,文体点阵和网格线全息图! 特色全息效果 Basic-支持菲涅耳发光照…...

Python Opencv实践 - 简单的AR项目

这个简单的AR项目效果是&#xff0c;通过给定一张静态图片作为要视频中要替换的目标物品&#xff0c;当在视频中检测到图片中的物体时&#xff0c;通过单应矩阵做投影&#xff0c;将视频中的物体替换成一段视频播放。这个项目的所有素材来自自己的手机拍的视频。 静态图片&…...

Java不可变集合

Java不可变集合 不可变集合&#xff1a;也就是不可以被修改的集合 创建不可变集合的应用场景 ●如果某个数据不能被修改&#xff0c;把它防御性地拷贝到不可变集合中是个很好的实践。 ●当集合对象被不可信的库调用时&#xff0c;不可变形式是安全的。 简单理解&#xff1…...

openGauss学习笔记-146 openGauss 数据库运维-备份与恢复-配置文件的备份与恢复

文章目录 openGauss学习笔记-146 openGauss 数据库运维-备份与恢复-配置文件的备份与恢复146.1 背景信息146.2 前置条件146.3 操作步骤146.4 示例 openGauss学习笔记-146 openGauss 数据库运维-备份与恢复-配置文件的备份与恢复 146.1 背景信息 在openGauss使用过程中&#x…...

一文读懂中间件

前言&#xff1a;在程序猿的日常工作中&#xff0c; 经常会提到中间件&#xff0c;然而大家对中间件的理解并不一致&#xff0c;导致了一些不必要的分歧和误解。“中间件”一词被用来描述各种各样的软件产品&#xff0c;在不同文献中有着许多不同的中间件定义&#xff0c;包括操…...

【编程基础心法】「设计模式系列」让我们一起来学编程界的“兵法”设计模式(序章)

一起来学编程界的“兵法”设计模式&#xff08;序章&#xff09; 设计模式是什么设计模式的概念设计模式的分类创建型模式&#xff08;5种&#xff09;结构型模式&#xff08;7种&#xff09;行为型模式&#xff08;11种&#xff09; 设计模式应用场景工厂模式的实现及应用单例…...

技术阅读周刊第第8️⃣期

技术阅读周刊&#xff0c;每周更新。 历史更新 20231103&#xff1a;第四期20231107&#xff1a;第五期20231117&#xff1a;第六期20231124&#xff1a;第七期 Prometheus vs. VictoriaMetrics (VM) | Last9 URL: https://last9.io/blog/prometheus-vs-victoriametrics/?refd…...

HTML程序大全(2):通用注册模版

一、正常情况效果 二、某项没有填写的效果 三、没有勾选同意项的效果 四、代码 <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>注册</title><style>body {font-family: Arial, sans-serif;background-color…...

【循环结构 for、break、continue高级用法】

在 C++ 中,for 循环是一种常用的循环结构,它用于重复执行代码块直到满足指定的条件。for 循环的基础用法相对简单,而高级用法则涉及更复杂的控制结构和技术。让我们探讨这些用法,并通过一些示例来加深理解。 文章目录 基础用法高级用法实战示例注意事项结合 break 和 conti…...

JAVA网络编程——BIO、NIO、AIO深度解析

I/O 一直是很多Java同学难以理解的一个知识点&#xff0c;这篇帖子将会从底层原理上带你理解I/O&#xff0c;让你看清I/O相关问题的本质。 1、I/O的概念 I/O 的全称是Input/Output。虽常谈及I/O&#xff0c;但想必你也一时不能给出一个完整的定义。搜索了谷哥欠&#xff0c;发…...

Linux高级系统编程-3 进程

概念 进程与程序的区别 程序&#xff1a;一个可执行文件, 占磁盘空间&#xff0c;是静态的 进程&#xff1a;一个程序运行的过程, 占内存&#xff0c;动态的。 单道程序和多道程序 单道程序设计: 所有进程一个一个排队执行。若 A 阻塞&#xff0c; B 只能等待&#xff0…...

ES-ELSER 如何在内网中离线导入ES官方的稀疏向量模型(国内网络环境下操作方法)

ES官方训练了稀疏向量模型&#xff0c;用来支持语义检索。&#xff08;目前该模型只支持英文&#xff09; 最好是以离线的方式安装。在线的方式&#xff0c;在国内下载也麻烦&#xff0c;下载速度也慢。还不如用离线的方式。对于一般的生产环境&#xff0c;基本上也是网络隔离的…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...