智能优化算法应用:基于人工大猩猩部队算法无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于人工大猩猩部队算法无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于人工大猩猩部队算法无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.人工大猩猩部队算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用人工大猩猩部队算法进行无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n m∗n个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2(3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=m∗n∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.人工大猩猩部队算法
人工大猩猩部队算法原理请参考:https://blog.csdn.net/u011835903/article/details/123047637
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
人工大猩猩部队算法参数如下:
%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升,表明人工大猩猩部队算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:

智能优化算法应用:基于人工大猩猩部队算法无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于人工大猩猩部队算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于人工大猩猩部队算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.人工大猩猩部队算法4.实验参数设…...

鼎捷受邀出席“中国制造业产品创新数字化国际峰会”,共话工业软件创新发展
11月30日, 由e-works数字化企业网、四川省智能制造创新中心、重庆制信信息技术服务有限公司主办的第十九届中国制造业产品创新数字化国际峰会在四川成都盛大开幕。 作为制造业研发信息化领域规模、影响力兼具的专业论坛,本届峰会以“构建基于数字底座的…...

大话数据结构-查找-多路查找树
注:本文同步发布于稀土掘金。 7 多路查找树 多路查找树(multi-way search tree),其每个结点的孩子可以多于两个,且每一个结点处可以存储多个元素。由于它是查找树,所有元素之间存在某种特定的排序关系。 …...

unity 2d 入门 飞翔小鸟 飞翔脚本(五)
新建c#脚本 using System.Collections; using System.Collections.Generic; using UnityEngine;public class Fly : MonoBehaviour {//获取小鸟(刚体)private Rigidbody2D bird;//速度public float speed;// Start is called before the first frame up…...

Linux系统调试课:I2C tools调试工具
文章目录 一、如何使用I2C tools测试I2C外设1、I2C tools概述: 2、下载I2C tools源码:3、编译I2C tools源码: 4、i2cdetect 5、i2cget 6、i2cdump...

uniapp中解决swiper高度自适应内容高度
起因:uniapp中swiper组件swiper 标签存在默认高度是 height: 150px ;高度无法实现由内容撑开,在默认情况下,swiper盒子高度显示总是 150px 解决办法思路: 动态设置swiper盒子的高度,故需要获取swiper-item盒…...

Contrast and Generation Make BART a Good Dialogue Emotion Recognizer
摘要 在对话系统中,具有相似语义的话语在不同的语境下可能具有不同的情感。因此,用说话者依赖来建模长期情境情绪关系在对话情绪识别中起着至关重要的作用。同时,区分不同的情绪类别也不是很简单的,因为它们通常具有语义上相似的…...

图的深度优先搜索(数据结构实训)
题目: 图的深度优先搜索 描述: 图的深度优先搜索类似于树的先根遍历,是树的先根遍历的推广。即从某个结点开始,先访问该结点,然后深度访问该结点的第一棵子树,依次为第二顶子树。如此进行下去,直…...

VUEX使用总结
1、Store 使用 文件内容大概就是这三个。通俗来讲actions负责向后端获取数据的,内部执行异步操作分发 Action,调用commit提交一个 mutation。 mutations通过Action提交commit的数据进行提交荷载,使state有数据。 vuex的数据是共享的…...

指定分隔符对字符串进行分割 numpy.char.split()
【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 指定分隔符对字符串进行分割 numpy.char.split() 选择题 请问下列程序运行的的结果是: import numpy as np print("【执行】np.char.split(I.Love.China, sep .)") p…...

Android12蓝牙框架
参考: https://evilpan.com/2021/07/11/android-bt/ https://source.android.com/docs/core/connect/bluetooth?hlzh-cn https://developer.android.com/guide/topics/connectivity/bluetooth?hlzh-cn https://developer.android.com/guide/components/intents-fi…...
python文件docx转pdf
centos部署的django项目,使用libreoffice做文件转换,官网给环境安装好libreoffice后,可使用命令行来进行转化 还可转换其他的各种格式,本文只做了pdf转换 import subprocess import os def convert_to_pdf(input_file, o…...

9.基于SpringBoot3+I18N实现国际化
1. 新建资源文件 在resources目录下新建目录i18n, 然后 新建messages_en.properties文件 user.login.erroraccount or password error!新建messages_zh_CN.properties文件 user.login.error帐户或密码错误!2. 新建LocaleConfig.java文件 Configurati…...

27. 深度学习进阶 - 为什么RNN
文章目录 一个柯基的例子为什么RNN or CNN Hi,你好。我是茶桁。 这节课开始,我们将会讲一个比较重要的一种神经网络,它对应了咱们整个生活中很多类型的一种问题结构,它就是咱们的RNN网络。 咱们首先回忆一下,上节课咱…...
谈一谈柔性数组
文章目录 什么是柔性数组柔性数组有什么用 什么是柔性数组 柔性数组是一种动态可变的数组,也许你从来没有听说过这个概念,但是它确实是存在的,是在C99标准底下支持的一种语法。想要使用柔性数组需要满足3个条件: 柔性数组只能存在…...

<Linux>(极简关键、省时省力)《Linux操作系统原理分析之Linux文件管理(1)》(25)
《Linux操作系统原理分析之Linux文件管理(1)》(25) 8 Linux文件管理8.1 Linux 文件系统概述8.2 EXT2 文件系统8.2.1 EXT2 文件系统的构造8.2.2 EXT2 超级块(super block)8.2.3 组描述符8.2.4 块位图 8.3 EX…...
算能PCIe开发环境搭建-一些记录
开发环境与运行环境: 开发环境是指用于模型转换或验证以及程序编译等开发过程的环境;运行环境是指在具备Sophon设备的平台上实际使用设备进行算法应用部署的运行环境。 开发环境与运行环境可能是统一的(如插有SC5加速卡的x86主机,…...

使用C#和HtmlAgilityPack打造强大的Snapchat视频爬虫
概述 Snapchat作为一款备受欢迎的社交媒体应用,允许用户分享照片和视频。然而,由于其特有的内容自动消失特性,爬虫开发面临一些挑战。本文将详细介绍如何巧妙运用C#和HtmlAgilityPack库,构建一个高效的Snapchat视频爬虫。该爬虫能…...
c/c++的字符和字符串输入输出
注: 1.下面这些为本人大学四年所用过的处理办法, 至今为止遇到的所有编程题都能够使用。如果需要了解更多关于putchar,cin.get,cin.getline等的请自行搜索。 2.getchar相当于获取一个字符,可以实现单个字符的输入以及通过循环实现多个字符输…...

学习设计模式的网站
Refactoring and Design Patternshttps://refactoring.guru/...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...

【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...

【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...