当前位置: 首页 > news >正文

【pytorch】深度学习入门一:pytorch的安装与配置(Windows版)

请支持原创,认准DannisTang(tangweixuan1995@foxmail.com)

文章目录

  • 第〇章 阅读前提示
  • 第一章 准备工作
    • 第一节 Python下载
    • 第二节 Python安装
    • 第三节 Python配置
    • 第四节 Pycharm下载
    • 第五节 Pycharm安装
    • 第六节 CUDA的安装
  • 第二章 Anaconda安装与配置
    • 第一节 Anaconda下载与环境变量配置
      • 1、Anaconda下载与安装
      • 2、Anaconda配置环境变量
    • 第二节 Anaconda镜像源配置
      • 1、查看
      • 2、配置(命令行)
        • 1)直接输入命令行配置
        • 2)文件夹进行输入配置(Windows版)
      • 3、配置(界面配置)
      • 4、删除(命令行)
      • 5、修改配置源(Linux版)
      • 6、常用命令
        • 1)环境类
        • 2)包类
    • 第三节 Pytorch安装与配置
      • 1、创建Pytorch环境
      • 2、激活Pytorch环境
      • 3、关闭Pytorch环境(可选)
      • 4、找到pytorch命令
      • 5、验证pytorch安装
      • 附节一、报错的场景和方法
        • 1、创建环境报错
        • 2、创建pytorch报错
        • 3、下载时间超时
        • 4、报错信息
      • 第四节 进入pycharm
        • 1、添加环境
        • 2、小试牛刀

第〇章 阅读前提示

本文重点放在深度学习上,因此,对于Python部分的内容,会稍显不足。如果本文的读者想重点了解Python相关的知识,请查看其他的文章。但是为了方便入门,本文在前面依然会描述Python配置相关的内容,以及一些需要用到的Python相关的命令等。

同时值得注意的是,本文如果没有特殊说明,均是在Windows平台下进行开发和调试等。

并且为了保证兼容性,硬件设备(即你的电脑主机)最好为英特尔的CPU与英伟达的GPU(通俗理解为显卡)。

第一章 准备工作

本章将讲解深度学习的准备工作,因为不是本文的主要目的,所以不会花费很大的篇幅去讲解, 如果在本章的过程中出现问题,可以在网络中搜索下出现的问题。

本章讲解,在windows下安装和配置python和pycharm以及英伟达的cuda的安装。

第一节 Python下载

Python官网下载,下载版本为3.11.5。下载地址链接(Windows版本)

选择自己的版本进行下载,不同Python的版本可能会有兼容性的问题

(版本兼容性:通常情况来说,大版本不同,不兼容性较大,小版本不同,兼容性较小。版本号大的会兼容版本号小的。但不排除有特殊情况)

第二节 Python安装

如果选择exe的安装包的方式的话,直接下一步下一步的安装即可

第三节 Python配置

exe安装包的方法进行默认的配置

第四节 Pycharm下载

在jetbrain的官网下载Pycharm下载地址链接(Windows版本)

第五节 Pycharm安装

因为是exe安装包,所以直接下一步即可。安装完成之后,需要license,请自行解决license。

第六节 CUDA的安装

在cmd命令窗口下面,执行命令

nvidia-smi

查看自己的cuda版本,如果版本太低的话,可以下载Nvidia GeForce Experience进行更新驱动
未更新英伟达驱动前更新英伟达驱动后

注:这里我更新过英伟达的显卡驱动,用的是Nvidia GeForce Experience,直接自动更新,所以前后的版本不一致(第一次是516.94,cuda是11.7;第二次是546.17,cuda是12.3)。

并且如果使用Nvidia GeForce Experience的话,需要登录Nvidia的账号,自行注册一个即可,这里不再赘述。

Nvidia GeForce Experience下载地址(下载安装后自动更新驱动,含CUDA)

第二章 Anaconda安装与配置

第一节 Anaconda下载与环境变量配置

1、Anaconda下载与安装

先下载anaconda,因为是免费的,所以官网下载即可
下载地址链接(Windows版本)

下载完成后,进行安装,安装后即可使用,安装过程中直接点下一步即可。安装的路径为,需要记录这两个路径,后面在pycharm需要用到,如果是你自己安装的(并且是默认的路径),将用户名替换成你自己的用户名即可

C:\Users\用户名\AppData\Local\anaconda3
C:\Users\用户名\AppData\Local\anaconda3\Scripts\conda.exe

安装完成后(如果是默认安装的话),可以在开始菜单中看到这些选项,其中用的最多的就是这个Anaconda Prompt后面也会重点用到。
Anaconda Prompt命令行

2、Anaconda配置环境变量

进入控制面板,然后输入环境变量,编辑Path即可
找到环境变量Path

然后添加以下三个路径即可
添加环境变量

点击确定即可完成添加。

第二节 Anaconda镜像源配置

1、查看

在Anaconda prompt中输入以下的命令以查看当前的镜像源

# 查看镜像源
conda config --show channels# 查看默认镜像源
conda config --show default_channels

2、配置(命令行)

1)直接输入命令行配置

在Anaconda prompt中输入以下的命令(选择性添加)

# 添加阿里源
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/main/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/r/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/msys2/# 添加清华源(不建议用)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/# (这几条是删除清华源的命令)
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/# 添加中科大源
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/# 如果是使用命令行进行镜像源配置,这里需要补充一条命令,在后续使用会有帮助
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes
2)文件夹进行输入配置(Windows版)

直接打开文件夹窗口,输入

C:/user/你的用户/.condarc

这里将你的用户换成你的Windows的电脑的用户即可,直接回车,会弹出打开方式,采用记事本或是你常用笔记软件打开都行,但是建议用记事本,因为常用的软件(比如UE或是notepad++会修改编码,然后用不了)。

然后换成以下的配置(全量替换),直接保存关闭就行(可以自行备份之前的配置信息)

# 以下为阿里源(推荐使用)
channels:- defaults
show_channel_urls: true
default_channels:- https://mirrors.aliyun.com/anaconda/pkgs/main/- https://mirrors.aliyun.com/anaconda/pkgs/free/- https://mirrors.aliyun.com/anaconda/pkgs/r/- https://mirrors.aliyun.com/anaconda/pkgs/msys2/
custom_channels:conda-forge: https://mirrors.aliyun.com/anaconda/cloudmsys2: https://mirrors.aliyun.com/anaconda/cloudbioconda: https://mirrors.aliyun.com/anaconda/cloudmenpo: https://mirrors.aliyun.com/anaconda/cloudpytorch: https://mirrors.aliyun.com/anaconda/cloudpytorch-lts: https://mirrors.aliyun.com/anaconda/cloudsimpleitk: https://mirrors.aliyun.com/anaconda/cloud
remote_read_timeout_secs: 10000.0# 以下为清华源(不建议用,不太行,可能网络会有问题)
channels:- defaults
show_channel_urls: true
default_channels:- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmsys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudbioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmenpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudsimpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
remote_read_timeout_secs: 10000.0

3、配置(界面配置)

该步骤与上步骤(步骤2)能实现同样的配置,因此,该步骤和上步骤二选一进行操作即可。
在Anaconda navigator中操作,
1)点击environment,点击channels,点击添加
2)输入以下的配置源(可以按需选择),输入完成后按回车确认

https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
https://mirrors.aliyun.com/anaconda/pkgs/free/
https://mirrors.aliyun.com/anaconda/pkgs/main/

3)删除默认的配置源defaults
4)点击update channels进行更新

4、删除(命令行)

在Anaconda prompt中输入以下的命令

# 以下为几个例子,如有需要,则进行替换源即可
conda config --remove channels defaults
conda config --remove channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pro/conda config --remove default_channels https://mirrors.aliyun.com/anaconda/pkgs/free/

这里采用界面操作形式删除也可以,具体方法参照上步骤(步骤3)

5、修改配置源(Linux版)

1)使用vim修改的配置文件

vim ~/.condarc

2)清空内容,然后复制下午并保存

#以下是阿里源(推荐使用)
channels:- defaults
show_channel_urls: true
default_channels:- https://mirrors.aliyun.com/anaconda/pkgs/main/- https://mirrors.aliyun.com/anaconda/pkgs/free/- https://mirrors.aliyun.com/anaconda/pkgs/r/- https://mirrors.aliyun.com/anaconda/pkgs/msys2/
custom_channels:conda-forge: https://mirrors.aliyun.com/anaconda/cloudmsys2: https://mirrors.aliyun.com/anaconda/cloudbioconda: https://mirrors.aliyun.com/anaconda/cloudmenpo: https://mirrors.aliyun.com/anaconda/cloudpytorch: https://mirrors.aliyun.com/anaconda/cloudpytorch-lts: https://mirrors.aliyun.com/anaconda/cloudsimpleitk: https://mirrors.aliyun.com/anaconda/cloud
remote_read_timeout_secs: 10000.0# 以下是清华源(不建议使用)
channels:- defaults
show_channel_urls: true
default_channels:- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:conda-forge: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmsys2: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudbioconda: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmenpo: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudsimpleitk: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

6、常用命令

1)环境类
# 进入(激活)环境(将命令中的中文替换对应的英文名)
activate 环境名# 退出(关闭)环境(将命令中的中文替换对应的英文名)
deactivate 环境名#列出所有环境(三条命令皆可)
conda env list
conda info --envs
conda info -e# 删除环境及下属所有包(将命令中的中文替换对应的英文名)
conda remove -n 环境名 --all # 删除本环境下的所有包(不删除环境)
conda clean -all# 复制环境(将命令中的中文替换对应的英文名)
conda create --name 新环境名 --clone 旧环境名
2)包类
# 查看conda的版本号,通常都是查看版本号以验证某软件是否安装
conda --version# 列出当前环境的所有包
conda list# 查看当前环境已安装包
conda list# 查找可安装的包(将命令中的中文替换对应的英文名)
conda search 包名# 在当前环境安装包(将命令中的中文替换对应的英文名)
conda install 包名# 在指定环境安装包(将命令中的中文替换对应的英文名)
conda install --name 环境名 包名# 在当前环境更新包(将命令中的中文替换对应的英文名)
conda update 包名# 在当前环境更新所有包(以下两条命令皆可)
conda update --all
conda upgrade --all# 在当前环境卸载包(将命令中的中文替换对应的英文名)
conda remove 包名# 在指定环境卸载包(将命令中的中文替换对应的英文名)
conda remove --name 环境名 包名# 精确查找包
conda search --full-name 精确包名
# 例子:conda search --full-name python# 模糊查找包
conda search 模糊包名
# 例子:conda search py

第三节 Pytorch安装与配置

1、创建Pytorch环境

使用 Anaconda Prompt (菜单栏中选项,如果不记得了,查看第二章第一节的第1步)进入命令行,创建一个pytorch环境

# 命令模板
conda create -n 环境名称 python=实际安装Python版本# 实际执行
conda create -n pytorchDemoProject python=3.11.5

我这里创建的环境名称为pytorchDemoProject,实际的Python的版本为3.11.5

注:如果不指定python版本,则会安装anaconda的相应的版本的。如anaconda是第二版,则会安装python2的版本;如anaconda是第三版,则会安装python3的版本

在安装过程中,先会找到对应的包,然后过程中提提示是否安装Y/N,这时候输入y并回车即可。
如图,第一张图为更新升级conda。再执行一次,即为安装pytorch。
升级conda作者注:这里在安装过程中实际上出现了一些问题,作者解决了之后,即可成功安装。但因如此,没能成功截取到图片。因此这里少了一张安装的图片,但安装过程如上文所述,只需在过程中按y并回车以确认安装即可。

2、激活Pytorch环境

然后激活刚刚创建的pytorchDemoProject 环境,这里的激活也可以理解为进入的意思

conda activate pytorchDemoProject 

如图
进入创建好的pytorch环境

3、关闭Pytorch环境(可选)

这一步是可选的,有激活的命令,也就有对应的关闭命令,关闭刚刚创建的pytorchDemoProject环境

conda deactivate pytorchDemoProject 

4、找到pytorch命令

去官网找到安装命令

然后根据图示的方法选择命令
官网的安装命令

复制这里生成的命令(即Run this Command中的命令,也就是下面这条),然后执行生成的命令,以安装pytorch

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

安装过程中还要输入一次y进行确认,在安装过程中会遇到很多问题,请查看下面的附节一进行排查和解决

5、验证pytorch安装

使用命令先查看是否安装成功

conda list

如图,显示如下,即表示该环境下有这些包了
安装成功的包

安装完了之后,输入python命令进入python界面
然后输入import torch进行导入
然后输入torch.cuda.is_available()进行验证是否成功,如图
验证是否安装成功

如图,即表示安装成功

附节一、报错的场景和方法

1、创建环境报错

报错提示如下

CondaHTTPError: HTTP 000 CONNECTION FAILED for url https://conda.anaconda.org/pytorch/win-64/pytorch-2.1.1-py3.11_cuda12.1_cudnn8_0.tar.bz2
Elapsed: -
An HTTP error occurred when trying to retrieve this URL.
HTTP errors are often intermittent, and a simple retry will get you on your way.

没有更新配置镜像源所致,需要更新一下镜像源

2、创建pytorch报错

报错提示如下
错误的配置了镜像源

配置了错误的镜像源所致,需要更新一下配置的镜像源

3、下载时间超时

有时候也会报超时的错误,如图

CondaError: Downloaded bytes did not match Content-Length
url: https://conda.anaconda.org/pytorch/win-64/pytorch-2.1.1-py3.11_cuda12.1_cudnn8_0.tar.bz2
target_path: C:\Users\tangweixuan\AppData\Local\anaconda3\pkgs\pytorch-2.1.1-py3.11_cuda12.1_cudnn8_0.tar.bz2
Content-Length: 1339118426
downloaded bytes: 26179998

解决方法1:
直接命令行

# 设置100000.0秒的超时时长
conda config --set remote_read_timeout_secs 100000.0

解决方法2:
找到.condarc配置文件,在配置文件最后添加

remote_read_timeout_secs: 100000.0
4、报错信息
Downloading and Extracting Packages
Preparing transaction: done
Verifying transaction: failed
CondaVerificationError: The package for libcurand-dev located at C:\Users\tangweixuan\AppData\Local\anaconda3\pkgs\libcurand-dev-10.3.4.101-0
appears to be corrupted. The path 'bin/curand64_10.dll'
specified in the package manifest cannot be found.
CondaVerificationError: The package for libcurand-dev located at C:\Users\tangweixuan\AppData\Local\anaconda3\pkgs\libcurand-dev-10.3.4.101-0
appears to be corrupted. The path 'include/curand_precalc.h'
specified in the package manifest cannot be found.
ClobberError: This transaction has incompatible packages due to a shared path.
packages: nvidia/win-64::cuda-cupti-12.1.105-0, nvidia/win-64::cuda-nvtx-12.1.105-0, nvidia/win-64::cuda-profiler-api-12.3.101-0
path: 'license'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/cjpeg.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/djpeg.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/jpegtran.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/rdjpgcom.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/wrjpgcom.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/include/jconfig.h'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/include/jerror.h'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/include/jmorecfg.h'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/include/jpeglib.h'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/lib/jpeg.lib'

暂时没找到这个报错的原因,直接从头开始来一遍了

第四节 进入pycharm

1、添加环境

直接使用命令行的形式来操作不好操作,这个时候用pycharm进行操作与开发。使用pycharm可以把刚刚创建好的anaconda的环境添加进去,就无需使用命令行进行开发了。
打开pycharm,任意创建一个pure python的project(为了方便看,我这里创建的是一个名叫pytorchProject的项目),你也可以随意命名。然后进入setting设置,然后添加接口
添加接口

然后选择路径
选择路径

使用我们刚刚的路径

# 注意:这里是我的电脑用户tangweixuan,你自己的电脑用户不一定是这个,请注意替换
C:\Users\tangweixuan\AppData\Local\anaconda3\Scripts\conda.exe

使用刚刚的路径

然后加载一下,并且选择我们在Anaconda中创建pytorchDemoProject(此刻,教育完成了闭环了。请给自己鼓掌打打气,你基本已经完成了安装和配置了),并且点击OK即可
选择创建好的环境

可以看到我们刚刚安装的环境里面的包,都有了
环境中包含有的包

然后点击ok,回到主界面;在main.py中输入

import torch
print(torch.cuda.is_available())

点击右上的播放按键进行执行
执行简单的命令

如上图,在下方控制台上打印出了True,表示成功了。

2、小试牛刀

在刚刚的pycharm中,使用和尝试一些基本的pytorch语法来小试牛刀吧!

# 创建一个未初始化的5x3矩阵
x1 = torch.empty(5, 3)
print('x1的结果是:')
print(x1)# 创建一个随机初始化的5x3矩阵
x2 = torch.rand(5, 3)
print('x2的结果是:')
print(x2)# 创建一个5x3的零矩阵,类型为long
x3 = torch.zeros(5, 3, dtype=torch.long)
print('x3的结果是:')
print(x3)# 直接从数据创建tensor
x4 = torch.tensor([5.5, 3])
print('x4的结果是:')
print(x4)

这时输入到main.py中(注意,import torch这句话需要一直保留,即使在后面的开发中也需要保留),可以在下方的控制台看到输出的结果
输入一些简单的pytorch命令
控制台的具体结果如下图
控制台的具体结果

到这里,你就基本完成pytorch的安装与配置了,接下来,可以大展拳脚了,你也来试试看吧(完结撒花)。

本文完全免费且公开,如果你觉得不错的话,请扫描下方二维码进行赞赏吧,你的支持就是我最大的动力,感谢!

请支持原创,认准DannisTang(tangweixuan1995@foxmail.com)

赞赏码

相关文章:

【pytorch】深度学习入门一:pytorch的安装与配置(Windows版)

请支持原创,认准DannisTang(tangweixuan1995foxmail.com) 文章目录 第〇章 阅读前提示第一章 准备工作第一节 Python下载第二节 Python安装第三节 Python配置第四节 Pycharm下载第五节 Pycharm安装第六节 CUDA的安装 第二章 Anaconda安装与配…...

安装postgresql驱动及python使用pyodbc指定postgresql驱动调用postgresql

注:Python解释器版本(32位/64位)和postgresql驱动版本(32位/64位)需一致。 一、安装postgresql驱动 https://www.postgresql.org/ftp/odbc/versions/msi/ (1)32位: (2)64位: 双击安装。全程默…...

【OpenCV】计算机视觉图像处理基础知识

目录 前言 推荐 1、OpenCV礼帽操作和黑帽操作 2、Sobel算子理论基础及实际操作 3、Scharr算子简介及相关操作 4、Sobel算子和Scharr算子的比较 5、laplacian算子简介及相关操作 6、Canny边缘检测的原理 6.1 去噪 6.2 梯度运算 6.3 非极大值抑制 6.4 滞后阈值 7、Ca…...

Course1-Week3-分类问题

Course1-Week3-分类问题 文章目录 Course1-Week3-分类问题1. 逻辑回归1.1 线性回归不适用于分类问题1.2 逻辑回归模型1.3 决策边界 2. 逻辑回归的代价函数3. 实现梯度下降4. 过拟合与正则化4.1 线性回归和逻辑回归中的过拟合4.2 解决过拟合的三种方法4.3 正则化4.4 用于线性回归…...

Dockerfile 指令的最佳实践

这些建议旨在帮助您创建一个高效且可维护的Dockerfile。 一、FROM 尽可能使用当前的官方镜像作为镜像的基础。Docker推荐Alpine镜像,因为它受到严格控制,体积小(目前不到6 MB),同时仍然是一个完整的Linux发行版。 FR…...

Drools 入门:折扣案例

1. 安装 在idea软件中安装Drools 插件&#xff0c;我这里是直接搜索Drools就可以搜到 2. 实现入门案例 2.1 配置pom.xml文件 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi&q…...

微信小程序中生命周期钩子函数

微信小程序 App 的生命周期钩子函数有以下 7 个&#xff1a; onLaunch(options)&#xff1a;当小程序初始化完成时&#xff0c;会触发 onLaunch&#xff08;全局只触发一次&#xff09;。onShow(options)&#xff1a;当小程序启动或从后台进入前台显示时&#xff0c;会触发 on…...

“无忧文件安全!上海迅软DSE文件加密软件助您轻松管控分公司数据!

许多大型企业集团由于旗下有着分布在不同城市的分支机构&#xff0c;因此在规划数据安全解决方案时&#xff0c;不适合采用市面上常见的集中式部署方式来管控各分部服务器&#xff0c;而迅软DSE文件加密软件支持采用分布式部署的方式来解决这一问题。 企业用户只需在总部内部署…...

详解线段树

前段时间写过一篇关于树状数组的博客树状数组&#xff0c;今天我们要介绍的是线段树&#xff0c;线段树比树状数组中的应用场景更加的广泛。这些问题也是在leetcode 11月的每日一题频繁遇到的问题&#xff0c;实际上线段树就和红黑树 、堆一样是一类模板&#xff0c;但是标准库…...

C语言——指针的运算

1、指针 - 整数 #include<stdio.h> #define N_VALUES 5 int main() {flout values[N_VALUES];flout *vp;for(vp&values[0];vp<&values[N_VALUES]&#xff1b;) //指针的关系运算{*vp0; //指针整数} } 2、指针 - 指针 #include<stdio.h> int main() …...

Apache Hive(部署+SQL+FineBI构建展示)

Hive架构 Hive部署 VMware虚拟机部署 一、在node1节点安装mysql数据库 二、配置Hadoop 三、下载 解压Hive 四、提供mysql Driver驱动 五、配置Hive 六、初始化元数据库 七、启动Hive(Hadoop用户) chown -R hadoop:hadoop apache-hive-3.1.3-bin hive 阿里云部…...

python入门级简易教程

Python是一种高级编程语言&#xff0c;由Guido van Rossum于1991年创建。它是一种通用的、解释型的、高级的、动态的、面向对象的编程语言。 Python的编程哲学是简洁明了&#xff0c;强调代码的可读性和简洁性&#xff0c;使开发人员能够快速开发出正确的代码。Python被广泛用…...

模拟一个集合 里面是设备号和每日的日期

问题&#xff1a; 需要模拟一个集合 里面是设备号和每日的日期 代码如下&#xff1a; static void Main(string[] args){string equipmentCodePar "";DateTime time DateTime.Now; // 获取当前时间DateTime startDate time.AddDays(1 - time.Day);//获取当前月第一…...

antdesign前端一直加载不出来

antdesign前端一直加载不出来 报错&#xff1a;Module “./querystring” does not exist in container. while loading “./querystring” from webpack/container/reference/mf at mf-va_remoteEntry.js:751:11 解决方案&#xff1a;Error: Module “xxx“ does not exist …...

排序算法介绍(一)插入排序

0. 简介 插入排序&#xff08;Insertion Sort&#xff09; 是一种简单直观的排序算法&#xff0c;它的工作原理是通过构建有序序列&#xff0c;对于未排序数据&#xff0c;在已排序序列中从后向前扫描&#xff0c;找到相应位置并插入。插入排序在实现上&#xff0c;通常…...

2023新优化应用:RIME-CNN-LSTM-Attention超前24步多变量回归预测算法

程序平台&#xff1a;适用于MATLAB 2023版及以上版本。 霜冰优化算法是2023年发表于SCI、中科院二区Top期刊《Neurocomputing》上的新优化算法&#xff0c;现如今还未有RIME优化算法应用文献哦。RIME主要对霜冰的形成过程进行模拟&#xff0c;将其巧妙地应用于算法搜索领域。 …...

RNN:文本生成

文章目录 一、完整代码二、过程实现2.1 导包2.2 数据准备2.3 字符分词2.4 构建数据集2.5 定义模型2.6 模型训练2.7 模型推理 三、整体总结 采用RNN和unicode分词进行文本生成 一、完整代码 这里我们使用tensorflow实现&#xff0c;代码如下&#xff1a; # 完整代码在这里 imp…...

Rust UI开发(五):iced中如何进行页面布局(pick_list的使用)?(串口调试助手)

注&#xff1a;此文适合于对rust有一些了解的朋友 iced是一个跨平台的GUI库&#xff0c;用于为rust语言程序构建UI界面。 这是一个系列博文&#xff0c;本文是第五篇&#xff0c;前四篇链接&#xff1a; 1、Rust UI开发&#xff08;一&#xff09;&#xff1a;使用iced构建UI时…...

Linux学习笔记2

web服务器部署&#xff1a; 1.装包&#xff1a; [rootlocalhost ~]# yum -y install httpd 2.配置一个首页&#xff1a; [rootlocalhost ~]# echo i love yy > /var/www/html/index.html 启动服务&#xff1a;[rootlocalhost ~]# systemctl start httpd Ctrl W以空格为界…...

数据结构算法-插入排序算法

引言 玩纸牌 的时候。往往 需要将牌从乱序排列变成有序排列 这就是插入排序 插入排序算法思想 先看图 首先第一个元素 我默认已有序 那我们从第二个元素开始&#xff0c;依次插入到前面已有序的部分中。具体来说&#xff0c;我们将第二个元素与第一个元素比较&#xff0c;…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...