scipy笔记:scipy.interpolate.interp1d
1 主要使用方法
class scipy.interpolate.interp1d(x, y, kind='linear', axis=-1, copy=True, bounds_error=None, fill_value=nan, assume_sorted=False)
2 主要函数
x | 一维实数值数组,代表插值的自变量 | ||||||||||||||||
y | N维实数值数组,其中沿着插值轴的 y 长度必须等于 x 的长度 默认的插值轴是 y 的最后一个轴 | ||||||||||||||||
kind | str or int 指定插值类型的字符串或表示样条插值器阶数的整数 指定的插值类型有:
| ||||||||||||||||
axis | y 数组中对应于 x 坐标值的轴。默认值为 -1。 | ||||||||||||||||
copy | 若为 True,则该类会对 x 和 y 进行内部复制。若为 False,则使用 x 和 y 的引用。默认为 True | ||||||||||||||||
bounds_error | 若为 True,在 x 范围外进行插值尝试时(需要外推)会引发 ValueError。 若为 False,则超出范围的值会被赋予 fill_value。 默认情况下,除非指定 fill_value="extrapolate",否则会引发错误 | ||||||||||||||||
fill_value | 如果为 ndarray(或浮点数),则在数据范围外的请求点将使用此值填充。 如果未提供,则默认为 NaN。 如果为两元素元组,则第一个元素用于 x_new < x[0],第二个元素用于 x_new > x[-1]。 使用两元素元组或 ndarray 需要 bounds_error=False | ||||||||||||||||
assume_sorted | 如果为 False,x 的值可以任意排序,并且首先进行排序。 如果为 True,则 x 必须是单调递增的数组 |
3 举例
3.1 导入库&准备数据
# 导入库
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import *# 数据部分
x=np.arange(0,10)
y=np.exp(-x/3.0)
3.2 创建interp1d
x_new=np.arange(0,9,0.1)
y_new=f(x_new)
y_new
'''
array([1. , 0.97165313, 0.94330626, 0.91495939, 0.88661252,0.85826566, 0.82991879, 0.80157192, 0.77322505, 0.74487818,0.71653131, 0.69621989, 0.67590847, 0.65559705, 0.63528563,0.61497421, 0.5946628 , 0.57435138, 0.55403996, 0.53372854,0.51341712, 0.49886335, 0.48430958, 0.46975582, 0.45520205,0.44064828, 0.42609451, 0.41154074, 0.39698698, 0.38243321,0.36787944, 0.35745121, 0.34702298, 0.33659475, 0.32616652,0.31573829, 0.30531006, 0.29488183, 0.2844536 , 0.27402537,0.26359714, 0.25612498, 0.24865283, 0.24118068, 0.23370852,0.22623637, 0.21876422, 0.21129206, 0.20381991, 0.19634776,0.1888756 , 0.18352157, 0.17816754, 0.17281351, 0.16745947,0.16210544, 0.15675141, 0.15139738, 0.14604335, 0.14068932,0.13533528, 0.13149895, 0.12766262, 0.12382629, 0.11998996,0.11615363, 0.11231729, 0.10848096, 0.10464463, 0.1008083 ,0.09697197, 0.09422312, 0.09147426, 0.08872541, 0.08597656,0.08322771, 0.08047886, 0.07773001, 0.07498115, 0.0722323 ,0.06948345, 0.06751381, 0.06554417, 0.06357454, 0.0616049 ,0.05963526, 0.05766562, 0.05569598, 0.05372634, 0.05175671])
'''
plt.plot(x,y,'o',x_new,y_new,'-')
3.3 不同kind不同结果
f_c=interp1d(x,y,kind='previous')
y_new=f_c(x_new)
plt.plot(x,y,'o',x_new,y_new,'-')
相关文章:

scipy笔记:scipy.interpolate.interp1d
1 主要使用方法 class scipy.interpolate.interp1d(x, y, kindlinear, axis-1, copyTrue, bounds_errorNone, fill_valuenan, assume_sortedFalse) 2 主要函数 x一维实数值数组,代表插值的自变量y N维实数值数组,其中沿着插值轴的 y 长度必须等于 x 的…...

外包干了一个月,技术明显进步。。。。。
先说一下自己的情况,本科生生,19年通过校招进入南京某软件公司,干了接近2年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了2年的功能测试…...

docker安装node及使用
文章目录 一、安装node二、创建node容器三、进入创建的容器如有启发,可点赞收藏哟~ 一、安装node 查看可用版本 docker search node安装最新版本 docker install node:latest二、创建node容器 docker run -itd --name node-test node–name node-test࿱…...
要求CHATGPT高质量回答的艺术:提示工程技术的完整指南—第 18 章:对抗性提示
要求CHATGPT高质量回答的艺术:提示工程技术的完整指南—第 18 章:对抗性提示 对抗性提示是一种允许模型生成能够抵御某些类型的攻击或偏差的文本的技术。这种技术可用于训练更健壮、更能抵御某些类型的攻击或偏差的模型。 要在 ChatGPT 中使用对抗性提…...

若依框架的搭建
若依框架 若依框架的搭建(前后端分离版本)环境要求IDEA拉取Gitee源码Mysql 配置Redis 配置后端启动前端配置问题解决 效果展示 若依框架的搭建(前后端分离版本) 简介 RuoYi-Vue 是一个 Java EE 企业级快速开发平台,基…...

SQL Server 数据库,多表查询
4.2使用T-SQL实现多表查询 前面讲述过的所有查询都是基于单个数据库表的查询,如果一个查询需要对多个表进行操作, 就称为联接查询,联接查询的结果集或结果称为表之间的联接。 联接查询实际上是通过各个表之间共同列的关联性来查询数据的&…...
程序解释与编译
▶1.程序的解释执行方式 程序语言强写的计策机指令序列称为“源程序”,计算机并不能直接执行用高级语言编写的源程序,源程序必须通过“翻译程序”翻译成机器指令的形式,计算机才能项别和执行。源程序的翻译有两种方式:解释执行和编译执行。不…...

聊聊 Jetpack Compose 的 “状态订阅自动刷新” -- mutableStateListOf
Jekpack Compose “状态订阅&自动刷新” 系列: 【 聊聊 Jetpack Compose 的 “状态订阅&自动刷新” - - MutableState/mutableStateOf 】 【 聊聊 Jetpack Compose 的 “状态订阅&自动刷新” - - remember 和重组作用域 】 【 聊聊 Jetpack Compose 的 …...

Dockerfile详解#如何编写自己的Dockerfile
文章目录 前言编写规则指令详解FROM:基础镜像LABEL:镜像描述信息MAINTAINER:添加作者信息COPY:从宿主机复制文件到镜像中ADD:从宿主机复制文件到镜像中WORKDIR:设置工作目录 前言 Dockerfile是编写docker镜…...
Elasticsearch桶聚合和管道聚合
1. 根据名称统计数量 GET order/_search {"_source": false,"aggs": {"aggs_name": { // 自定义查询结果名称"terms": { // 使用的函数"field": "name.keyword"}}} }查询结果例子: "aggregat…...

联想范建平:联想混合AI架构具备两大明显优势
12月7日,首届AI PC创新论坛在北京联想集团总部举办。联想集团副总裁、联想研究院人工智能实验室负责人范建平表示,为提供真正可信、个性化的AI专属服务,联想提出了混合智能(Hybrid AI)概念,并已经显现出更强…...

探索Spring事件监听机制的奇妙世界
文章目录 什么是Spring事件监听机制主要组件内置的事件监听类自定义事件监听类总结 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 什么是Spring事件监听机制 Spring事件监听机制是Spr…...
什么是散列函数
散列函数是一种公开的数学函数。散列函数运算的输入信息也可叫作报文。散列函数运算后所得到的结果叫作散列码或者叫作消息摘要。散列函数具有如下一些特点: (1)不同内容的报文具有不同的散列码,而一旦原始报文有任何改变…...
tomcat反序列化
漏洞介绍: 漏洞名称: Apache Tomcat反序列化漏洞影响范围: Apache Tomcat服务器中使用了自带session同步功能的配置,且没有使用Encrypt Interceptor加密拦截器的情况下。漏洞描述: Apache Tomcat是一个基于Java的Web应用软件容器,用于运行servlet和JSP Web应用。当Tomc…...
flask 请求勾子实现 request_auth认证
from flask import g,request from comment.utils.tokens_pyjwt import verify_tokensdef jwt_request_auth():从请求(request)中获取token,并且验证token,验证成功之后把用户id保存到全局变量g中g.user_idNone #定义变量#前端代码是是把token携带请求头…...

【STM32入门】3.OLED屏幕
1.OLED引脚 OLED屏幕的接线按图所示,本例中用的是4管脚OLED屏幕 2.驱动程序 配套的驱动程序是“OLED.c",主要由以下函数构成:1、初始化;2、清屏;3、显示字符;4、显示字符串;5、显示数字…...

python圣诞树代码编程
以下是一个简单的Python圣诞树代码: def draw_tree(height): for i in range(height): print( * (height - i - 1) * * (2 * i 1)) print( * (height - 1) |)draw_tree(10) 这个函数会绘制一个等腰三角形,其中每一行的星号数量从1开…...

js数组删除某个元素
...

hbuilder + uniapp +vue3 开发微信云小程序
1、创建项目: 2、创建项目完成的默认目录结构: 3、在根目录新建一个文件夹cloudFns(文件名字随便),存放云函数源码: 4、修改manifest.json文件:添加 小程序 appid和cloudfunctionRoot࿰…...

服务器配置免密SSH
在当今互联网时代,远程工作和网络安全已成为信息技术领域的热点话题。无论是管理远程服务器、维护网络设备还是简单地从家中连接到办公室,安全始终是首要考虑的因素。这就是为什么 SSH(Secure Shell)成为了网络专业人士的首选工具…...

CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...