当前位置: 首页 > news >正文

【矩阵论】Chapter 4—特征值和特征向量知识点总结复习

文章目录

    • 1 特征值和特征向量
    • 2 对角化
    • 3 Schur定理和正规矩阵
    • 4 Python求解

1 特征值和特征向量

  • 定义

    σ \sigma σ为数域 F F F上线性空间 V V V上的一个线性变换,一个非零向量 v ∈ V v\in V vV,如果存在一个 λ ∈ F \lambda \in F λF使得 σ ( v ) = λ v \sigma(v)=\lambda v σ(v)=λv,则 λ \lambda λ称为 σ \sigma σ特征值 σ \sigma σ的特征值的集合称为 σ \sigma σ。并称 v v v σ \sigma σ的属于(或对应于)特征值 λ \lambda λ的特征向量。

  • 特征值和特征向量的求法

    V V V是数域 F F F上的 n n n维线性空间, v 1 , ⋯ , v n v_1,\cdots,v_n v1,,vn V V V的一组基,线性变换 σ \sigma σ在这组基下的矩阵为 A A A,如果 λ \lambda λ σ \sigma σ的特征值, α \alpha α是相应的特征向量。则
    α = ( v 1 , ⋯ , v n ) ( x 1 ⋮ x n ) \alpha=(v_1,\cdots,v_n)\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix} α=(v1,,vn) x1xn
    将上式代入 σ ( v ) = λ v \sigma(v)=\lambda v σ(v)=λv得到
    σ ( α ) = ( v 1 , ⋯ , v n ) A ( x 1 ⋮ x n ) λ α = λ ( v 1 , ⋯ , v n ) ( x 1 ⋮ x n ) \sigma(\alpha)=(v_1,\cdots,v_n)A\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}\\ \lambda \alpha=\lambda (v_1,\cdots,v_n)\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}\\ σ(α)=(v1,,vn)A x1xn λα=λ(v1,,vn) x1xn
    由于 v 1 , ⋯ , v n v_1,\cdots,v_n v1,,vn线性无关,所以
    A ( x 1 ⋮ x n ) = λ ( x 1 ⋮ x n ) A\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}=\lambda \begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix} A x1xn =λ x1xn
    则说明特征向量 α \alpha α的坐标 x = ( x 1 ⋮ x n ) x=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix} x= x1xn 满足齐次线性方程组 ( λ I − A ) x = 0 (\lambda I-A)x=0 (λIA)x=0

    因为 α ≠ 0 \alpha\neq 0 α=0,则 x ≠ 0 x\neq 0 x=0,即齐次线性方程组 ( λ I − A ) x = 0 (\lambda I-A)x=0 (λIA)x=0有非零解。有非零解的充要条件是它的系数矩阵它的系数矩阵行列式 ∣ λ I − A ∣ = 0 |\lambda I-A|=0 λIA=0

  • 相关定义

    A A A是数域 F F F上的 n n n阶矩阵, λ \lambda λ是一个符号,也是未知的特征值,矩阵 λ I − A \lambda I-A λIA称为 A A A特征矩阵,其行列式 ∣ λ I − A ∣ |\lambda I-A| λIA称为 A A A特征多项式。方程 ∣ λ I − A ∣ = 0 |\lambda I-A|=0 λIA=0称为 A A A的特征方程,它的根(即 λ \lambda λ的值)称为 A A A的特征根(或特征值)。以 A A A的特征值 λ \lambda λ代入 A x = λ x Ax=\lambda x Ax=λx中所得到的非零解 x x x称为 A A A对应于 λ \lambda λ特征向量

  • 定理

    A A A n × n n\times n n×n矩阵, λ \lambda λ是一个数值,以下命题等价:

    1. λ \lambda λ A A A的特征值
    2. ( λ I − A ) x = 0 (\lambda I-A)x=0 (λIA)x=0有一个非平凡的解(即有非零向量的解)
    3. N ( λ I − A ) ≠ { 0 } N(\lambda I-A)\neq\{0\} N(λIA)={0}
    4. λ I − A \lambda I-A λIA矩阵是奇异矩阵
    5. det ⁡ ( λ I − A ) = 0 \det(\lambda I-A)=0 det(λIA)=0
  • 特征多项式的系数

    如果
    p ( λ ) = det ⁡ ( λ I − A ) = λ n + ∑ k = 1 n ( − 1 ) k c k λ n − k = λ n − c 1 λ n − 1 + ⋯ + ( − 1 ) n − 1 c n − 1 λ + ( − 1 ) n c n p(\lambda)=\det(\lambda I-A)=\lambda^n+\sum_{\\k=1}^n(-1)^kc_k\lambda^{n-k}\\=\lambda ^n-c_1\lambda^{n-1}+\cdots+(-1)^{n-1}c_{n-1}\lambda+(-1)^nc_n p(λ)=det(λIA)=λn+k=1n(1)kckλnk=λnc1λn1++(1)n1cn1λ+(1)ncn
    c k ( 1 ≤ k ≤ n ) c_k(1\leq k\leq n) ck(1kn)是所有 k k k阶主子式(选择 k k k k k k列形成的行列式)的和,特别的, c 1 = t r ( A ) , c n = det ⁡ ( A ) c_1=tr(A),c_n=\det(A) c1=tr(A),cn=det(A)

  • 定理

    1. A ∈ C n × n A\in C^{n\times n} ACn×n,如果 A A A有特征值 λ 1 , ⋯ , λ n \lambda_1,\cdots,\lambda_n λ1,,λn,则
      t r ( A ) = ∑ i = 1 n λ i , det ⁡ ( A ) = ∏ i = 1 n λ i tr(A)=\sum_{\\i=1}^n\lambda_i,\det(A)=\prod_{i=1}^n\lambda_i tr(A)=i=1nλi,det(A)=i=1nλi

    2. 如果 A A A相似 B B B,则两个矩阵有相同的特征值和特征多项式。

    3. A ∈ C m × n A\in C^{m\times n} ACm×n,则 A H A A^HA AHA A A H AA^H AAH特征值都是非负实数,且它们都有相同的非零特征值和相同的重数,并且非零特征值(包含重数)的数量等于 r a n k ( A ) rank(A) rank(A)

2 对角化

  • 定义

    设矩阵 A ∈ F n × n A\in F^{n\times n} AFn×n,如果存在一个非奇异矩阵 P ∈ F n × n P\in F^{n\times n} PFn×n和一个对角矩阵 D ∈ F n × n D\in F^{n\times n} DFn×n,使得 P − 1 A P = D P^{-1}AP=D P1AP=D,则称 A A A可被对角化。

  • 定理

    1. A A A可以被对角化当且仅当 A A A n n n个线性无关的特征向量
    2. λ 1 , ⋯ , λ k \lambda_1,\cdots,\lambda_k λ1,,λk A A A的不同的特征值,则对应的特征向量 x 1 , ⋯ , x k x_1,\cdots,x_k x1,,xk它们是线性无关的
    3. 由以上两条定理即可推出如果 A A A n n n个不同的特征值,则 A A A可被对角化
    4. 不同特征值对应的特征向量的集合的并集是线性无关的。即取每个特征值的所有特征向量,无论这些向量属于哪个特征值,它们的并集都是线性无关的。
  • 代数重数

    A ∈ F n × n A\in F^{n\times n} AFn×n,如果 det ⁡ ( λ I − A ) = ( λ − λ i ) r 1 ⋯ ( λ − λ k ) r k \det(\lambda I-A)=(\lambda -\lambda_i)^{r_1}\cdots(\lambda-\lambda_k)^{r_k} det(λIA)=(λλi)r1(λλk)rk,其中 λ 1 , ⋯ , λ k \lambda_1,\cdots,\lambda_k λ1,,λk A A A的特征值,它们是不同的。则特征值 λ i \lambda_i λi的代数重数是 r i r_i ri,即特征值 λ i \lambda_i λi出现的次数。

  • 几何重数

    与特征值 λ i \lambda_i λi对应的特征子空间是 N ( λ i I − A ) N(\lambda_i I-A) N(λiIA),则特征值 λ i \lambda_i λi的几何重数为 dim ⁡ ( N ( λ i I − A ) ) \dim(N(\lambda_i I-A)) dim(N(λiIA))

    几何重数$\leq $代数重数

  • 几何重数看可对角化

    矩阵 A ∈ F n × n A\in F^{n\times n} AFn×n可对角化当且仅当 A A A中不同特征值的几何重数和等于 n n n(即每个特征值的代数重数都要等于几何重数)

3 Schur定理和正规矩阵

  • 酉(正交)相似定义

    A ∈ C n × n ( R n × n ) A\in C^{n\times n}(R^{n\times n}) ACn×n(Rn×n),如果存在一个酉(正交)矩阵 U U U使得 U H A U = B ( U H = U − 1 ) U^HAU=B\space\space\space(U^H=U^{-1}) UHAU=B   (UH=U1),则可称 A A A酉(正交)相似 B B B

  • Schur定理

    ∀ A ∈ C n × n \forall A\in C^{n\times n} ACn×n A A A都与上三角矩阵相似,且存在酉矩阵 U U U和上三角矩阵 T T T使得 U H A U = U − 1 A U = T U^HAU=U^{-1}AU=T UHAU=U1AU=T

    仅适用于复数域,实数域上不一定适用

  • 正规矩阵定义

    A ∈ C n × n A\in C^{n\times n} ACn×n,如果 A A A满足 A H A = A A H A^HA=AA^H AHA=AAH,则称 A A A是正规矩阵。

    Hermite矩阵,酉(正交)矩阵都是正规矩阵

  • 谱定理

    A ∈ C n × n A\in C^{n\times n} ACn×n,如果 A A A是Hermite矩阵,则 A A A酉相似于一个实对角矩阵,换句话说,Hermite矩阵的特征值都是实数。

  • 引理

    A ∈ C n × n A\in C^{n\times n} ACn×n A A A是正规矩阵当且仅当 ∀ λ , x \forall \lambda,x λ,x使得 ∣ ∣ A x − λ x ∣ ∣ = ∣ ∣ A H x − λ ˉ x ∣ ∣ ||Ax-\lambda x||=||A^Hx-\bar{\lambda}x|| ∣∣Axλx∣∣=∣∣AHxλˉx∣∣

  • 同时对角化

    A , B A,B A,B都是相同阶数的正规矩阵,则存在一个酉矩阵可以同时酉对角化 A , B A,B A,B当且仅当 A B = B A AB=BA AB=BA

4 Python求解

import numpy as np
from sympy import symbols, Matrix
import pprint# 定义符号变量
lambda_ = symbols('lambda')A = np.array([[0, 2, 1], [-2, 0, 3], [-1, -3, 0]])
A = Matrix(A)# 求特征矩阵
characteristic_matrix = A - lambda_ * np.eye(3)
pprint.pprint("关于 lambda 的特征矩阵:")
pprint.pprint(characteristic_matrix)# 计算特征多项式
characteristic_polynomial = A.charpoly(lambda_)
pprint.pprint("关于 lambda 的特征多项式:")
pprint.pprint(characteristic_polynomial)# 求特征值
eigenvalues = A.eigenvals()
# 打印特征值、其代数重数、特征向量和几何重数for k, v in eigenvalues.items():pprint.pprint("特征值 %s 的代数重数为 %s" % (k, v))pprint.pprint("特征值 %s 的几何重数为 %s" % (k, A.eigenvects()[list(eigenvalues.keys()).index(k)][1]))pprint.pprint("特征值 %s 的特征向量为 %s" % (k, A.eigenvects()[list(eigenvalues.keys()).index(k)][2]))# 判断A是否可对角化,如果可以,打印出对角化矩阵
if A.is_diagonalizable():pprint.pprint("A可对角化")pprint.pprint("对角化矩阵为:")pprint.pprint(A.diagonalize()[0])# 求A的行空间、列空间、零空间
pprint.pprint("A的行空间为:")
pprint.pprint(A.rowspace())
pprint.pprint("A的列空间为:")
pprint.pprint(A.columnspace())
pprint.pprint("A的零空间为:")
pprint.pprint(A.nullspace())

相关文章:

【矩阵论】Chapter 4—特征值和特征向量知识点总结复习

文章目录 1 特征值和特征向量2 对角化3 Schur定理和正规矩阵4 Python求解 1 特征值和特征向量 定义 设 σ \sigma σ为数域 F F F上线性空间 V V V上的一个线性变换,一个非零向量 v ∈ V v\in V v∈V,如果存在一个 λ ∈ F \lambda \in F λ∈F使得 σ (…...

Linux 进程地址空间

知识回顾 在 C 语言的学习过程中,我们知道内存是可以被划分为栈区,堆区,全局数据区,字符常量区,代码区的。他的空间排布可能是下面的样子: 其中,全局数据区,可以划分为已初始化全局…...

websocket vue操作

let websocket: WebSocket; /** websocket测试 */ function connectWebsocket() {if (typeof WebSocket "undefined") {console.log("您的浏览器不支持WebSocket");return;}// let ip window.location.hostname ":8080";let ip "10.192…...

腾讯云CentOS8 jenkins war安装jenkins步骤文档

腾讯云CentOS8 jenkins war安装jenkins步骤文档 一、安装jdk 1.1 上传jdk-11.0.20_linux-x64_bin.tar.gz 1.2 解压jdk安装包文件 tar -zxvf jdk*.tar.gz 1.3 在/usr/local 目录下创建java目录 cd /usr/local mkdir java 1.4 切到java目录,把jdk解压文件改名为jd…...

Linux: glibc: net/if.h vs linux/if.h

最近看到一段代码改动,用net/if.h替换了linux/if.h。仔细看了看这两个的区别: https://stackoverflow.com/questions/20082433/what-is-the-difference-between-linux-if-h-and-net-if-h 从网上搜了一下看到如下的一个编译错误,如果同时使用这两个if.h文件,需要将net/if.h…...

使用Android Studio导入Android源码:基于全志H713 AOSP,方便解决编译、编码问题

文章目录 一、 篇头二、 操作步骤2.1 编译AOSP AS工程文件2.2 将AOSP导入Android Studio2.3 切到Project试图2.4 等待index结束2.5 下载缺失的JDK 1.82.6 导入完成 三、 导入AS的好处3.1 本文案例演示源码编译错误AS对比同文件其余地方的调用AS错误提示依赖AS做错误修正 一、 篇…...

python random详解

文章目录 random简单示例1. 生成随机浮点数:2. 生成指定范围内的随机整数:3. 从序列中随机选择元素:4. 打乱序列顺序: 常用的方法及其解释和例子:1. random():该方法返回一个0到1之间的随机浮点数。例如&am…...

java-两个列表进行比较,判断那些是需要新增的、删除的、和更新的

文章目录 前言两个列表进行比较,判断那些是需要新增的、删除的、和更新的 前言 如果您觉得有用的话,记得给博主点个赞,评论,收藏一键三连啊,写作不易啊^ _ ^。   而且听说点赞的人每天的运气都不会太差,实…...

【WPF.NET开发】WPF中的对话框

目录 1、消息框 2、通用对话框 3、自定义对话框 实现对话框 4、打开对话框的 UI 元素 4.1 菜单项 4.2 按钮 5、返回结果 5.1 模式对话框 5.2 处理响应 5.3 非模式对话框 Windows Presentation Foundation (WPF) 为你提供了自行设计对话框的方法。 对话框是窗口&…...

NLP项目实战01之电影评论分类

介绍: 欢迎来到本篇文章!在这里,我们将探讨一个常见而重要的自然语言处理任务——文本分类。具体而言,我们将关注情感分析任务,即通过分析电影评论的情感来判断评论是正面的、负面的。 展示: 训练展示如下…...

一款可无限扩展的软件定时器开源框架项目代码

摘自链接 时间片轮询架构如何稳定高效实现,取代传统的标志位判断方式,更优雅更方便地管理程序的时间触发操作。 可以在STM32单片机上运行。...

GRE与顺丰圆通快递盒子

1. DNS污染 随想: 在输入一串网址后,会发生如下变化如果你在系统中配置了 Hosts 文件,那么电脑会先查询 Hosts 文件如果 Hosts 里面没有这个别名,就通过域名服务器查询域名服务器回应了,那么你的电脑就可以根据域名服…...

12.Mysql 多表数据横向合并和纵向合并

Mysql 函数参考和扩展&#xff1a;Mysql 常用函数和基础查询、 Mysql 官网 Mysql 语法执行顺序如下&#xff0c;一定要清楚&#xff01;&#xff01;&#xff01;运算符相关&#xff0c;可前往 Mysql 基础语法和执行顺序扩展。 (8) select (9) distinct (11)<columns_name…...

线性回归与逻辑回归:深入解析机器学习的基石模型

目录 一、线性回归 二、逻辑回归 逻辑回归算法和 KNN 算法的区别 分类算法评价维度...

电脑待机怎么设置?让你的电脑更加节能

在日常使用电脑的过程中&#xff0c;合理设置待机模式是一项省电且环保的好习惯。然而&#xff0c;许多用户对于如何设置电脑待机感到困扰。那么电脑待机怎么设置呢&#xff1f;本文将深入探讨三种常用的电脑待机设置方法&#xff0c;通过详细的步骤&#xff0c;帮助用户更好地…...

数据库对象介绍与实践:视图、函数、存储过程、触发器和物化视图

文章目录 一、视图&#xff08;View&#xff09;1、概念2、基本操作1&#xff09;创建视图2&#xff09;修改视图3&#xff09;删除视图4&#xff09;使用视图 3、使用场景4、实践 二、函数&#xff08;Function&#xff09;1、概念2、基本操作1&#xff09;创建函数2&#xff…...

arm平台编译so文件回顾

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、几个点二、回顾过程 1.上来就执行Makefile2.编译第三方开源库.a文件 2.1 build.sh脚本2.2 Makefile3.最终编译三、其它知识点总结 前言 提示&#xff1a;这…...

【数据结构】顺序表的定义和运算

目录 1.初始化 2.插入 3.删除 4.查找 5.修改 6.长度 7.遍历 8.完整代码 &#x1f308;嗨&#xff01;我是Filotimo__&#x1f308;。很高兴与大家相识&#xff0c;希望我的博客能对你有所帮助。 &#x1f4a1;本文由Filotimo__✍️原创&#xff0c;首发于CSDN&#x1f4da;。 &…...

idea使用maven的package打包时提示“找不到符号”或“找不到包”

介绍&#xff1a;由于我们的项目是多模块开发项目&#xff0c;在打包时有些模块内容更新导致其他模块在引用该模块时不能正确引入。 情况一&#xff1a;找不到符号 情况一&#xff1a;找不到包 错误代码部分展示&#xff1a; Failure to find com.xxx.xxxx:xxx:pom:0.5 in …...

MetricBeat监控MySQL

目录 一、安装部署 二、开启mysql监控模块 三、编辑mysql配置文件 四、启动Metricbeat 五、查看监控图表 一、安装部署 metriceat的安装部署参考章节&#xff1a; Metricbeat安装使用&#xff0c;这里不再赘述。 二、开启mysql监控模块 进入metricbeat安装目录 ./metricb…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...