当前位置: 首页 > news >正文

ChatGPT(GPT3.5) OpenAI官方API正式发布

        OpenAI社区今天凌晨4点多发送的邮件,介绍了ChatGPT官方API的发布。官方介绍文档地址为“OpenAI API”和“OpenAI API”。

        ChatGPT(GPT3.5)官方API模型名称为“gpt-3.5-turbo”和“gpt-3.5-turbo-0301”。API调用价格比GPT text-davinci-003模型便宜10倍。调用费用为0.002美元/1000tokens,折合下来差不多0.1元4000~5000字。这个字数包括问题和返回结果字数。

1 API调用方法

1.1 调用参数

        ChatGPT(GPT3.5)官方API调用方式如下所示,与GPT3模型调用基本一致,输入主要有7个参数。预计今天晚上,这两个模型会集成到RdFast智能创作机器人小程序和RdChat桌面程序。大家可以随时体验一下,敬请关注。

  1. model:模型名称,gpt-3.5-turbo或gpt-3.5-turbo-0301
  2. messages:问题或待补全内容,下面重点介绍。
  3. temperature:控制结果随机性,0.0表示结果固定,随机性大可以设置为0.9。
  4. max_tokens:最大返回字数(包括问题和答案),通常汉字占两个token。假设设置成100,如果prompt问题中有40个汉字,那么返回结果中最多包括10个汉字。ChatGPT API允许的最大token数量为4096,即max_tokens最大设置为4096减去问题的token数量。
  5. top_p:设置为1即可。
  6. 6frequency_penalty:设置为0即可。
  7. presence_penalty:设置为0即可。
  8. stream。

        需要注意,上述输入参数增加stream,即是否采用控制流的方式输出。

        如果stream取值为False,那么返回结果与第1节GPT3接口一致,完全返回全部文字结果,可通过response["choices"][0]["text"]进行读取。但是,字数越多,等待返回时间越长,时间可参考控制流读出时的4字/每秒。

        如果steam取值为True时,那么返回结果是一个Python generator,需要通过迭代获取结果,平均大约每秒钟4个字(33秒134字,39秒157字),读取程序如下所示。可以看到,读取结果的结束字段为“<|im_end|>”。

1.2 messages

        messages字段组成部分包括角色role和content问题两个部分组成,如下所示:

  model="gpt-3.5-turbo",messages=[{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Who won the world series in 2020?"},{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},{"role": "user", "content": "Where was it played?"}]

        在gpt-3.5-turbo模型中,角色role包含system系统、assistant助手和用户user三种类型。System角色相当于告诉ChatGPT具体以何种角色回答问题,需要在content中指明具体的角色和问题内容。而gpt-3.5-turbo-0301主要区别在于更加关注问题内容,而不会特别关注具体的角色部分。gpt-3.5-turbo-0301模型有效期到6月1日,而gpt-3.5-turbo会持续更新。

        assistant助手和用户user则相当于已经指明了角色,content直接写入关注的问题即可。

2 参考程序

        示例参考程序如下所示:

# -*- coding: utf-8 -*-
"""
Created on Wed Dec 21 21:58:59 2022@author: Administrator
"""import openaidef openai_reply(content, apikey):openai.api_key = apikeyresponse = openai.ChatCompletion.create(model="gpt-3.5-turbo-0301",#gpt-3.5-turbo-0301messages=[{"role": "user", "content": content}],temperature=0.5,max_tokens=1000,top_p=1,frequency_penalty=0,presence_penalty=0,)# print(response)return response.choices[0].message.contentif __name__ == '__main__':content = '你是谁?'ans = openai_reply(content, '你的APIKEY')print(ans)

3 API调用效果

相关文章:

ChatGPT(GPT3.5) OpenAI官方API正式发布

OpenAI社区今天凌晨4点多发送的邮件&#xff0c;介绍了ChatGPT官方API的发布。官方介绍文档地址为“OpenAI API”和“OpenAI API”。 ChatGPT(GPT3.5)官方API模型名称为“gpt-3.5-turbo”和“gpt-3.5-turbo-0301”。API调用价格比GPT text-davinci-003模型便宜10倍。调用费用为…...

CAD中如何将图形对象转换为三维实体?

有些小伙伴在CAD绘制完图纸后&#xff0c;想要将图纸中的某些图形对象转换成三维实体&#xff0c;但却不知道该如何操作&#xff0c;其实很简单&#xff0c;本节CAD绘图教程就和小编一起来了解一下浩辰CAD软件中将符合条件的对象转换为三维实体的相关操作步骤吧&#xff01; 将…...

【K8S笔记】Kubernetes 集群架构与组件介绍

K8S 官方文档 https://kubernetes.io/zh/docs/home ##注重关注 概念和任务 板块。 K8S 集群架构 K8S也是运用了分布式集群架构&#xff1a; 管理节点/Master 整个集群的管理&#xff0c;任务协作。工作节点/Node 容器运行、删除。 K8S 组件介绍 管理节点/Master 相关组件 …...

9 怎么登录VNC

1&#xff09;首先在ssh登录后启动vncserver。登陆后输入下面的指令来创建自己的VNC。 命令vncserver :16 –geometry 1900x1000 其中&#xff1a;16是分配的端口号&#xff0c;1900x1000是分辨率。如果没有响应&#xff0c;建议执行下面操作后再次重复上面操作。 命令&#xf…...

MPI ubuntu安装,mpicc,mpicxx,mpif90的区别

介绍 MPI是并行计算的一个支持库&#xff0c;支持对C、C、fortran语言进行并行计算。 安装基础环境 ubuntu进行gcc/g/gfortran的安装&#xff1a; gcc&#xff1a; ubuntu下自带gcc编译器。可以通过gcc -v命令来查看是否安装。 g&#xff1a; sudo apt-get install buil…...

移动端笔记

目录 一、移动端基础 二、视口 三、二倍图/多倍图 四、移动端开发 &#xff08;一&#xff09;开发选择 &#xff08;二&#xff09;常见布局 &#xff08;三&#xff09;移动端技术解决方案 五、移动WEB开发之flex布局 六、移动WEB开发之rem适配布局 #END&#xff08…...

操作系统笔记、面试八股(一)—— 进程、线程、协程

文章目录1. 进程、线程、协程1.1 进程1.1.1 进程间的通信方式1.1.2 进程同步方式1.1.3 进程的调度算法1.1.4 优先级反转1.1.5 进程状态1.1.6 PCB进程控制块1.1.7 进程的创建和撤销过程1.1.8 为什么要有进程1.2 线程1.2.1 为什么要有线程1.2.2 线程间的同步方式1.3 协程1.3.1 什…...

Python每日一练(20230302)

目录 1. 字符串统计 2. 合并两个有序链表 3. 下一个排列 附录 Python字典内置方法 增 删 改 查 其它 1. 字符串统计 从键盘输入一个包含有英文字母、数字、空格和其它字符的字符串&#xff0c;并分别实现下面的功能&#xff1a;统计字符串中出现2次的英文字母&#…...

Numpy课后练习

Numpy课后练习 文章目录 Numpy课后练习一、前言二、题目及答案一、前言 答案仅供参考,谢谢大家! 二、题目及答案 导入Numpy包并设置随机数种子为666 import numpy as np np.random.seed(666)创建并输出一个包含12个元素的随机整数数组r1,元素的取值范围在[30,100)之间 r1 …...

动态规划dp中的子序列、子数组问题总结

目录 定义dp数组 初始化dp数组 状态转移方程 最终结果 题目 定义dp数组 这类问题的共性是会提供两个数组,寻找他们共同的子序列、子数组。设第一个数组为s,第二个数组为t。则可以设二维dp数组,其大小为len(s + 1)*len(t + 1) dp[i][j]表示 s 前 i 个长度,...

Zookeeper3.5.7版本——Zookeeper的概述、工作机制、特点、数据结构及应用场景

目录一、Zookeeper的概述二、Zookeeper的工作机制三、Zookeeper的特点四、Zookeeper的数据结构五、Zookeeper的应用场景5.1、统一命名服务5.2、统一配置管理5.3、统一集群管理5.4、服务器动态上下线5.5、软负载均衡一、Zookeeper的概述 Zookeeper 是一个开源的分布式的&#x…...

安卓逆向学习及APK抓包(二)--Google Pixel一代手机的ROOT刷入面具

注意:本文仅作参考勿跟操作&#xff0c;root需谨慎&#xff0c;本次测试用的N手Pixel&#xff0c;因参考本文将真机刷成板砖造成的损失与本人无关 1 Google Pixel介绍 1.1手机 google Pixel 在手机选择上&#xff0c;优先选择谷歌系列手机&#xff0c;Nexus和Pixel系列&…...

线程池的基本认识与使用

线程池的基本认识与使用线程池线程池工作原理&#xff1a;优点&#xff1a;传统的创建线程方式线程池创建线程使用线程池 池化思想&#xff1a;线程池、字符串常量池、数据库连接池可以提高资源的利用率 线程池工作原理&#xff1a; 预先创建多个线程对象 放入线程池种&#…...

小家电品牌私域增长解决方案来了

小家电品牌的私域优势 01、行业线上化发展程度高 相对于大家电动辄上千上万元的价格&#xff0c;小家电的客单价较低。而且与大家电偏刚需属性不同的是&#xff0c;小家电的消费需求侧重场景化&#xff0c;用户希望通过购买小家电来提高自身的生活品质。这就决定了用户的决策…...

什么是让ChatGPT爆火的大语言模型(LLM)

什么是让ChatGPT爆火的大语言模型(LLM) 更多精彩内容: https://www.nvidia.cn/gtc-global/?ncidref-dev-876561 文章目录什么是让ChatGPT爆火的大语言模型(LLM)大型语言模型有什么用&#xff1f;大型语言模型如何工作&#xff1f;大型语言模型的热门应用在哪里可以找到大型语言…...

【监控】Linux部署postgres_exporter及PG配置(非Docker)

目录一、下载及部署二、postgres_exporter配置1. 停止脚本stop.sh2. 启动脚本start.sh3. queries.yaml三、PostgreSQL数据库配置1. 修改postgresql.conf配置文件2. 创建用户、表、扩展等四、参考一、下载及部署 下载地址 选一个amd64下载 上传至服务器&#xff0c;解压 tax…...

基于Java+SpringBoot+Vue+Uniapp(有教程)前后端分离健身预约系统设计与实现

博主介绍&#xff1a;✌全网粉丝3W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战✌ 博主作品&#xff1a;《微服务实战》专栏是本人的实战经验总结&#xff0c;《Spring家族及…...

【2023】DevOps、SRE、运维开发面试宝典之Redis相关面试题

文章目录 1、redis主从复制原理2、redis哨兵模式的原理3、reids集群原理4、Redis 哈希表进行的触发时机是什么?5、Redis 的 RDB 和 AOF 机制各自的优缺点是什么?这两种机制是否可以混合使用?6、Redis 经常被称为单线程的系统,你如何理解 Redis 的单线程模型7、redis 的事务…...

十五、MyBatis使用PageHelper

1.limit分页 limit分页原理 mysql的limit后面两个数字&#xff1a; 第一个数字&#xff1a;startIndex&#xff08;起始下标。下标从0开始。&#xff09; 第二个数字&#xff1a;pageSize&#xff08;每页显示的记录条数&#xff09; 假设已知页码pageNum&#xff0c;还有每页…...

【MySQL】B+ 树索引

一、索引是什么 &#xff1f; 为什么需要索引 &#xff1f; 索引就是目录&#xff0c;目录就是索引。 索引从 InnoDB 存储引擎数据存储结构上来看&#xff0c;就是为各个页建立的目录。保证我们在查询时&#xff0c;可以通过二分法快速定位到页&#xff0c;再在页内通过二分法…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...