当前位置: 首页 > news >正文

【python交互界面】实现动态观察图像在给定HSV范围的区域显示

HSV颜色空间

        与RGB颜色空间相比,HSV颜色空间更适合进行颜色分析和提取特定颜色的目标。在HSV空间中,颜色信息被分布在不同的通道上,使我们能够更准确地定义颜色的范围,并使用阈值操作轻松地分离出我们感兴趣的区域部分。

        HSV三个通道的含义

  1. 色相(Hue)表示颜色的类型或种类,而不受光照变化的影响。

  2. 饱和度(Saturation)表示颜色的纯度或鲜艳程度。

  3. 明度(Value)表示颜色的亮度。

        在提取期望颜色区域时,参考博客给出的HSV颜色识别-HSV基本颜色分量范围-CSDN博客

滑动条交互界面的代码实现 

# 通过滑动条动态观察不同的HSV的阈值下图像可显示区域的变化过程import cv2
import numpy as npdef on_trackbar_min_hue(value):global min_huemin_hue = valuedef on_trackbar_max_hue(value):global max_huemax_hue = valuedef on_trackbar_min_saturation(value):global min_saturationmin_saturation = valuedef on_trackbar_max_saturation(value):global max_saturationmax_saturation = valuedef on_trackbar_min_value(value):global min_valuemin_value = valuedef on_trackbar_max_value(value):global max_valuemax_value = value# 创建一个空窗口
cv2.namedWindow('Color Range Visualization')# 创建滑动条并初始化HSV最小和最大值
min_hue, max_hue = 100, 130
min_saturation, max_saturation = 40, 255
min_value, max_value = 80, 255# 创建滑动条
cv2.createTrackbar('Min Hue', 'Color Range Visualization', min_hue, 179, on_trackbar_min_hue)
cv2.createTrackbar('Max Hue', 'Color Range Visualization', max_hue, 179, on_trackbar_max_hue)
cv2.createTrackbar('Min Saturation', 'Color Range Visualization', min_saturation, 255, on_trackbar_min_saturation)
cv2.createTrackbar('Max Saturation', 'Color Range Visualization', max_saturation, 255, on_trackbar_max_saturation)
cv2.createTrackbar('Min Value', 'Color Range Visualization', min_value, 255, on_trackbar_min_value)
cv2.createTrackbar('Max Value', 'Color Range Visualization', max_value, 255, on_trackbar_max_value)# 读取示例图像
image = cv2.imread("YOUR IMAGE PATH")
image = cv2.resize(image,(700,700))        # 图片过小的话,窗口容不下这些控件
print(image.shape)while True:# 转换图像到HSV颜色空间hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)# 创建一个包含最小和最大HSV值的NumPy数组lower_range = np.array([min_hue, min_saturation, min_value])upper_range = np.array([max_hue, max_saturation, max_value])# 根据HSV范围创建掩码mask = cv2.inRange(hsv_image, lower_range, upper_range)# 将掩码应用于原始图像result = cv2.bitwise_and(image, image, mask=mask)# 在显示窗口上实时显示滑动条的数值text1 = f"Min Hue: {min_hue}  Max Hue: {max_hue}"cv2.putText(result, text1, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)text2 = f"Min Saturation: {min_saturation}  Max Saturation: {max_saturation} "cv2.putText(result, text2, (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)text3 = f"Min Value: {min_value}  Max Value: {max_value}"cv2.putText(result, text3, (10, 110), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)# 显示结果图像cv2.imshow('Original Image', image)cv2.imshow('Color Range Visualization', result)# 按下Esc键退出if cv2.waitKey(1) == 27:break# 释放窗口和销毁所有创建的窗口
cv2.destroyAllWindows()

运行结果示例

        通过拉动上方的滑动条,不在滑动条对应的HSV范围内区域将被[0,0,0]的mask淹没,即可以实时可视化选定HSV范围内的区域

        如下图所示,三张图片依次为:滑动条窗口,选定HSV范围内的区域可视化,输入的原图像

相关文章:

【python交互界面】实现动态观察图像在给定HSV范围的区域显示

HSV颜色空间 与RGB颜色空间相比,HSV颜色空间更适合进行颜色分析和提取特定颜色的目标。在HSV空间中,颜色信息被分布在不同的通道上,使我们能够更准确地定义颜色的范围,并使用阈值操作轻松地分离出我们感兴趣的区域部分。 HSV三个通…...

Vue3中定义变量是选择ref还是reactive?

目录 ref和reactive的优势 1. ref 优势: 应用场景: 示例: 2. reactive 优势: 应用场景: 示例: ref和reactive的劣势 1. ref 2. reactive 应用案例 总结 Vue3中定义变量可以选择使用ref或reac…...

数据结构 | 查漏补缺之哈希表、最短路径、二叉树与森林的转换

哈希表是什么? 或者说 设图采用邻接表的存储结构,写对图的删除顶点和删除边的算法步骤 删除边 删除点 最短路径问题 参考博文 迪杰斯特拉(Dijkstra)算法_dijkstra算法-CSDN博客 Dijkstra(迪杰斯特拉)算法 定义一个点为源点,算源…...

SpringCloud

五大组件 注册/配置中心 Nacos 、Eureka远程调用 Feign负载均衡 Ribbon服务保护 sentinel(实现限流、降级、熔断)网关 gateway 注册中心 Eureka 服务注册:服务提供者把自己的信息注册到Eureka,由Eureka来保存这些信息服务发现…...

fastadmin嵌套关联查询,thinkPHP5嵌套关联查询

fastadmin嵌套关联查询 thinkPHP5嵌套关联查询 笔记记录 嵌套关联查询 A -> B -> C A 表关联B表 B表关联C表 同时把A/B/C表相关的数据展现出来 B表的model B表关联C表 我的C表是B表的自身关联。也是一个表,所以为C表 namespace app…...

Power BI - 5分钟学习拆分列

每天5分钟,今天介绍Power BI拆分列功能。 什么是拆分列? 有时导入Power BI的数据表中,某列内容都包含同样的特殊字符如 /&/-/_等,可以利用这个特殊字符进行拆分列的操作,获得我们想要的信息。 操作举例&#xf…...

ELK(四)—els基本操作

目录 elasticsearch基本概念RESTful API创建非结构化索引(增)创建空索引(删)删除索引(改)插入数据(改)数据更新(查)搜索数据(id)&…...

【100天精通Python】Day75:Python机器学习-第一个机器学习小项目_鸾尾花分类项目(上)

目录 1 机器学习中的Helloworld _鸾尾花分类项目 2 导入项目所需类库和鸾尾花数据集 2.1 导入类库 2.2 scikit-learn 库介绍 (1)主要特点: (2)常见的子模块: 3 导入鸾尾花数据集 3.1 概述数据 3.…...

gitlab高级功能之容器镜像仓库

今天给大家介绍一个gitlab的高级功能 - Container Registry,该功能可以实现docker镜像的仓库功能,将gitlab上的代码仓的代码通过docker构建后并推入到容器仓库中,好处就是无需再额外部署一套docker仓库。 文章目录 1. 参考文档2. Container R…...

线程的使用(二)

新增实现方式之实现Callable接口 特点 1、可以有返回值。 2、方法可以抛异常。 3、支持泛型的返回值。 4、需借助FutureTask类,比如获取返回值。 步骤 1、创建一个实现Callable接口的实现类。 2、重写call方法, 将此线程需执行的操作声明在call&…...

k8s之镜像拉取时使用secret

k8s之secret使用 一、说明二、secret使用2.1 secret类型2.2 创建secret2.3 配置secret 一、说明 从公司搭建的网站镜像仓库,使用k8s部署服务时拉取镜像失败,显示未授权: 需要在拉取镜像时添加认证信息. 关于secret信息,参考: https://www.…...

mysql面试题——MVCC

一:什么是MVCC? 多版本并发控制,更好的方式去处理读-写冲突,就是为了查询一些正在被另一个事务更新的行,并且可以看到它们被更新之前的值,这样在做查询的时候就不用等待另一个事务释放锁。 二&#xff1a…...

【华为数据之道学习笔记】1-2华为数字化转型与数据治理

传统企业通过制造先进的机器来提升生产效率,但是未来,如何结构性地提升服务和运营效率,如何用更低的成本获取更好的产品,成了时代性的问题。数字化转型归根结底就是要解决企业的两大问题:成本和效率,并围绕…...

微服务01

笔记: day03-微服务01 - 飞书云文档 (feishu.cn) 数据库连接不上? 要在虚拟机启动MySQL容器。docker start mysql 服务治理 服务提供者:暴露服务接口,供其他服务调用 服务消费者:调用其他服务提供的接口 注册中心&…...

作业12.8

1. 使用手动连接,将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中,在自定义的槽函数中调用关闭函数。将登录按钮使用qt5版本的连接到自定义的槽函数中,在槽函数中判断ui界面上输入的账号是否为"admin",密码是…...

已解决error: (-215:Assertion failed) inv_scale_x > 0 in function ‘cv::resize‘

需求背景 欲使用opencv的resize函数将图像沿着纵轴放大一倍,即原来的图像大小为(384, 512), 现在需要将图像放大为(768, 512)。 源码 import cv2 import numpy as np# 生成初始图像 img np.zeros((384, 512), dtypenp.uint8) img[172:212, 32:-32] 255 H, W …...

Android View.inflate 和 LayoutInflater.from(this).inflate 的区别

前言 两个都是布局加载器,而View.inflate是对 LayoutInflater.from(context).inflate的封装,功能相同,案例使用了dataBinding。 View.inflate(context, layoutResId, root) LayoutInflater.from(context).inflate(layoutResId, root, fals…...

etcd 与 Consul 的一致性读对比

本文分享和对比了 etcd 和 Consul 这两个存储的一致性读的实现。 作者:戴岳兵,爱可生研发中心工程师,负责项目的需求开发与维护工作。 爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源。 本…...

Docker 安装Apache Superset 并实现汉化和快速入门

什么是Apache Superset Apache Superset是一个现代化的企业级商业智能Web应用程序。Apache Superset 支持用户的各种数据类型可视化和数据分析,支持简单图饼图到复杂的地理空间图表。Apache Superset 是一个轻量级、简单化、直观化、可配置的BI 框架。 Docker 安…...

差异计算基础知识 - 了解期末业务操作、WIP 和差异

原文地址:Basics of variance calculation-Understanding Period End activities, WIP and Variances | SAP Blogs 大家好, 这是我在成本核算方面的第六份文件,旨在解释期末的差异计算和相关活动。 我将引导您完成期末活动和差异计算。在本文…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...