当前位置: 首页 > news >正文

【python交互界面】实现动态观察图像在给定HSV范围的区域显示

HSV颜色空间

        与RGB颜色空间相比,HSV颜色空间更适合进行颜色分析和提取特定颜色的目标。在HSV空间中,颜色信息被分布在不同的通道上,使我们能够更准确地定义颜色的范围,并使用阈值操作轻松地分离出我们感兴趣的区域部分。

        HSV三个通道的含义

  1. 色相(Hue)表示颜色的类型或种类,而不受光照变化的影响。

  2. 饱和度(Saturation)表示颜色的纯度或鲜艳程度。

  3. 明度(Value)表示颜色的亮度。

        在提取期望颜色区域时,参考博客给出的HSV颜色识别-HSV基本颜色分量范围-CSDN博客

滑动条交互界面的代码实现 

# 通过滑动条动态观察不同的HSV的阈值下图像可显示区域的变化过程import cv2
import numpy as npdef on_trackbar_min_hue(value):global min_huemin_hue = valuedef on_trackbar_max_hue(value):global max_huemax_hue = valuedef on_trackbar_min_saturation(value):global min_saturationmin_saturation = valuedef on_trackbar_max_saturation(value):global max_saturationmax_saturation = valuedef on_trackbar_min_value(value):global min_valuemin_value = valuedef on_trackbar_max_value(value):global max_valuemax_value = value# 创建一个空窗口
cv2.namedWindow('Color Range Visualization')# 创建滑动条并初始化HSV最小和最大值
min_hue, max_hue = 100, 130
min_saturation, max_saturation = 40, 255
min_value, max_value = 80, 255# 创建滑动条
cv2.createTrackbar('Min Hue', 'Color Range Visualization', min_hue, 179, on_trackbar_min_hue)
cv2.createTrackbar('Max Hue', 'Color Range Visualization', max_hue, 179, on_trackbar_max_hue)
cv2.createTrackbar('Min Saturation', 'Color Range Visualization', min_saturation, 255, on_trackbar_min_saturation)
cv2.createTrackbar('Max Saturation', 'Color Range Visualization', max_saturation, 255, on_trackbar_max_saturation)
cv2.createTrackbar('Min Value', 'Color Range Visualization', min_value, 255, on_trackbar_min_value)
cv2.createTrackbar('Max Value', 'Color Range Visualization', max_value, 255, on_trackbar_max_value)# 读取示例图像
image = cv2.imread("YOUR IMAGE PATH")
image = cv2.resize(image,(700,700))        # 图片过小的话,窗口容不下这些控件
print(image.shape)while True:# 转换图像到HSV颜色空间hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)# 创建一个包含最小和最大HSV值的NumPy数组lower_range = np.array([min_hue, min_saturation, min_value])upper_range = np.array([max_hue, max_saturation, max_value])# 根据HSV范围创建掩码mask = cv2.inRange(hsv_image, lower_range, upper_range)# 将掩码应用于原始图像result = cv2.bitwise_and(image, image, mask=mask)# 在显示窗口上实时显示滑动条的数值text1 = f"Min Hue: {min_hue}  Max Hue: {max_hue}"cv2.putText(result, text1, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)text2 = f"Min Saturation: {min_saturation}  Max Saturation: {max_saturation} "cv2.putText(result, text2, (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)text3 = f"Min Value: {min_value}  Max Value: {max_value}"cv2.putText(result, text3, (10, 110), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)# 显示结果图像cv2.imshow('Original Image', image)cv2.imshow('Color Range Visualization', result)# 按下Esc键退出if cv2.waitKey(1) == 27:break# 释放窗口和销毁所有创建的窗口
cv2.destroyAllWindows()

运行结果示例

        通过拉动上方的滑动条,不在滑动条对应的HSV范围内区域将被[0,0,0]的mask淹没,即可以实时可视化选定HSV范围内的区域

        如下图所示,三张图片依次为:滑动条窗口,选定HSV范围内的区域可视化,输入的原图像

相关文章:

【python交互界面】实现动态观察图像在给定HSV范围的区域显示

HSV颜色空间 与RGB颜色空间相比,HSV颜色空间更适合进行颜色分析和提取特定颜色的目标。在HSV空间中,颜色信息被分布在不同的通道上,使我们能够更准确地定义颜色的范围,并使用阈值操作轻松地分离出我们感兴趣的区域部分。 HSV三个通…...

Vue3中定义变量是选择ref还是reactive?

目录 ref和reactive的优势 1. ref 优势: 应用场景: 示例: 2. reactive 优势: 应用场景: 示例: ref和reactive的劣势 1. ref 2. reactive 应用案例 总结 Vue3中定义变量可以选择使用ref或reac…...

数据结构 | 查漏补缺之哈希表、最短路径、二叉树与森林的转换

哈希表是什么? 或者说 设图采用邻接表的存储结构,写对图的删除顶点和删除边的算法步骤 删除边 删除点 最短路径问题 参考博文 迪杰斯特拉(Dijkstra)算法_dijkstra算法-CSDN博客 Dijkstra(迪杰斯特拉)算法 定义一个点为源点,算源…...

SpringCloud

五大组件 注册/配置中心 Nacos 、Eureka远程调用 Feign负载均衡 Ribbon服务保护 sentinel(实现限流、降级、熔断)网关 gateway 注册中心 Eureka 服务注册:服务提供者把自己的信息注册到Eureka,由Eureka来保存这些信息服务发现…...

fastadmin嵌套关联查询,thinkPHP5嵌套关联查询

fastadmin嵌套关联查询 thinkPHP5嵌套关联查询 笔记记录 嵌套关联查询 A -> B -> C A 表关联B表 B表关联C表 同时把A/B/C表相关的数据展现出来 B表的model B表关联C表 我的C表是B表的自身关联。也是一个表,所以为C表 namespace app…...

Power BI - 5分钟学习拆分列

每天5分钟,今天介绍Power BI拆分列功能。 什么是拆分列? 有时导入Power BI的数据表中,某列内容都包含同样的特殊字符如 /&/-/_等,可以利用这个特殊字符进行拆分列的操作,获得我们想要的信息。 操作举例&#xf…...

ELK(四)—els基本操作

目录 elasticsearch基本概念RESTful API创建非结构化索引(增)创建空索引(删)删除索引(改)插入数据(改)数据更新(查)搜索数据(id)&…...

【100天精通Python】Day75:Python机器学习-第一个机器学习小项目_鸾尾花分类项目(上)

目录 1 机器学习中的Helloworld _鸾尾花分类项目 2 导入项目所需类库和鸾尾花数据集 2.1 导入类库 2.2 scikit-learn 库介绍 (1)主要特点: (2)常见的子模块: 3 导入鸾尾花数据集 3.1 概述数据 3.…...

gitlab高级功能之容器镜像仓库

今天给大家介绍一个gitlab的高级功能 - Container Registry,该功能可以实现docker镜像的仓库功能,将gitlab上的代码仓的代码通过docker构建后并推入到容器仓库中,好处就是无需再额外部署一套docker仓库。 文章目录 1. 参考文档2. Container R…...

线程的使用(二)

新增实现方式之实现Callable接口 特点 1、可以有返回值。 2、方法可以抛异常。 3、支持泛型的返回值。 4、需借助FutureTask类,比如获取返回值。 步骤 1、创建一个实现Callable接口的实现类。 2、重写call方法, 将此线程需执行的操作声明在call&…...

k8s之镜像拉取时使用secret

k8s之secret使用 一、说明二、secret使用2.1 secret类型2.2 创建secret2.3 配置secret 一、说明 从公司搭建的网站镜像仓库,使用k8s部署服务时拉取镜像失败,显示未授权: 需要在拉取镜像时添加认证信息. 关于secret信息,参考: https://www.…...

mysql面试题——MVCC

一:什么是MVCC? 多版本并发控制,更好的方式去处理读-写冲突,就是为了查询一些正在被另一个事务更新的行,并且可以看到它们被更新之前的值,这样在做查询的时候就不用等待另一个事务释放锁。 二&#xff1a…...

【华为数据之道学习笔记】1-2华为数字化转型与数据治理

传统企业通过制造先进的机器来提升生产效率,但是未来,如何结构性地提升服务和运营效率,如何用更低的成本获取更好的产品,成了时代性的问题。数字化转型归根结底就是要解决企业的两大问题:成本和效率,并围绕…...

微服务01

笔记: day03-微服务01 - 飞书云文档 (feishu.cn) 数据库连接不上? 要在虚拟机启动MySQL容器。docker start mysql 服务治理 服务提供者:暴露服务接口,供其他服务调用 服务消费者:调用其他服务提供的接口 注册中心&…...

作业12.8

1. 使用手动连接,将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中,在自定义的槽函数中调用关闭函数。将登录按钮使用qt5版本的连接到自定义的槽函数中,在槽函数中判断ui界面上输入的账号是否为"admin",密码是…...

已解决error: (-215:Assertion failed) inv_scale_x > 0 in function ‘cv::resize‘

需求背景 欲使用opencv的resize函数将图像沿着纵轴放大一倍,即原来的图像大小为(384, 512), 现在需要将图像放大为(768, 512)。 源码 import cv2 import numpy as np# 生成初始图像 img np.zeros((384, 512), dtypenp.uint8) img[172:212, 32:-32] 255 H, W …...

Android View.inflate 和 LayoutInflater.from(this).inflate 的区别

前言 两个都是布局加载器,而View.inflate是对 LayoutInflater.from(context).inflate的封装,功能相同,案例使用了dataBinding。 View.inflate(context, layoutResId, root) LayoutInflater.from(context).inflate(layoutResId, root, fals…...

etcd 与 Consul 的一致性读对比

本文分享和对比了 etcd 和 Consul 这两个存储的一致性读的实现。 作者:戴岳兵,爱可生研发中心工程师,负责项目的需求开发与维护工作。 爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源。 本…...

Docker 安装Apache Superset 并实现汉化和快速入门

什么是Apache Superset Apache Superset是一个现代化的企业级商业智能Web应用程序。Apache Superset 支持用户的各种数据类型可视化和数据分析,支持简单图饼图到复杂的地理空间图表。Apache Superset 是一个轻量级、简单化、直观化、可配置的BI 框架。 Docker 安…...

差异计算基础知识 - 了解期末业务操作、WIP 和差异

原文地址:Basics of variance calculation-Understanding Period End activities, WIP and Variances | SAP Blogs 大家好, 这是我在成本核算方面的第六份文件,旨在解释期末的差异计算和相关活动。 我将引导您完成期末活动和差异计算。在本文…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...