当前位置: 首页 > news >正文

HBase-架构与设计

HBase架构与设计

  • 一、背景
  • 二、HBase概述
    • 1.设计特点
    • 2.适用场景
      • 2.1 海量数据
      • 2.2 稀疏数据
      • 2.3 多版本数据
      • 2.4 半结构或者非结构化数据
  • 三、数据模型
    • 1.表逻辑结构
    • 2.RowKey
    • 3.Column Family
    • 4.TimeStamp
    • 5.存储结构
  • 四、HBase架构图
    • 1.Client
    • 2.Zookeeper
    • 3.HMaster
    • 4.HRegionServer
    • 5.HRegion
    • 6.Store
    • 7.StoreFile
    • 8.HLog
  • 五、元数据存储
    • 1.元数据表
    • 2.数据结构
  • 六、写流程
    • 1.获取Meta元数据
    • 2.获取RegionServer
    • 3.发送写入请求
  • 七、读流程
    • 1.获取Meta元数据
    • 2.获取RegionServer
    • 3.发送读请求
  • 八、持久化
    • 1.恢复机制
    • 2.MemStore 刷盘
      • 2.1 Memstore级别限制
      • 2.2 Region级别限制
      • 2.3 Region Server级别限制
      • 2.4 HLog数量上限
      • 2.5 定期刷新Memstore
      • 2.6 手动flush
    • 3.HFile 合并
      • 3.1 合并原理
      • 3.2 Minor Compaction
      • 3.3 Major Compaction
  • 总结
    • 参考链接


一、背景

HBase是一个基于java的NoSQL分布式列存储数据库,主要用于存储非结构化和半结构化的松散数据。将Hadoop中的HDFS作为底层文件存储系统,来提供容错和可靠性,以及存储系统的拓展性。
HBase的设计思想来自Google的Bigtable论文,是分布式数据库的实现。HDFS是一个高可靠、高延迟的分布式文件系统,但是不支持对数据的随机访问和更新,因此不适合实时计算系统。HBase是一个可以提供实时计算的大数据分布式数据库,支持对数据的随机访问和更新。

二、HBase概述

HBase的底层存储引擎是基于LSM-Tree数据结构设计的,存储是基于HDFS。而针对数据的更新和删除,不是修改原有记录而是新增一条记录,这样可以充分发挥顺序写的性能,但是查询的时候就需要查询磁盘中的文件和内存中的操作,读取所有数据版本。因此HBase写性能比读性能提高了两个数量级。

1.设计特点

  • 强一致性读写:HBase时强一致性读写,适合高速计数聚合之类的任务。
  • 自动分片:HBase表会按照水平方向拆分成Region分布在集群上,Region会随着数据增长自动拆分和重新均衡。
  • 故障转移:RegionServer如果发生故障会自动恢复
  • 集成HDFS:HBase内部集成HDFS作为其持久化存储组件
  • 支持MapReduce:HBase支持MapReduce进行大规模并行处理,支持写入和读取。
  • 查询优化:HBase通过块缓存和布隆过滤器来优化大容量查询

2.适用场景

2.1 海量数据

传递RDRMS当数据量增大时,需要读写分离策略来解决服务器压力。如果数据量继续增加就需要分库分表,这就限制了一些关联查询并引入中间层。每次变动都需要很多准备工作和业务代码修改验证。而且即使分库分表也无法解决一些数据倾斜和热点问题。HBase支持自动水平拓展,内部集成HDFS解决数据可靠性,还支持利用MapReduce进行海量数据分析。

2.2 稀疏数据

HBase作为列式存储适合稀疏数据,针对为null的列不会进行存储,这样可以节约存储空间并提高读性能。

2.3 多版本数据

HBase的更新和删除操作不会修改原有记录而是通过新增记录实现。通过RowKey和ColumnKey定位到多个TimeStamp相关的Value值,因此可以存储变动历史记录。可以通过设置版本数量,来确定HBase保留几次变动记录。

2.4 半结构或者非结构化数据

HBase无固定模式,不需要停机进行维护,支持半结构和非结构化的数据。

三、数据模型

作为一个面向列的分布式数据库,存储的数据是稀疏、多维、有序的。HBase表中的一条数据是由全局唯一的键(RowKey)和任意数量的列(Column),一列或者多列组成一个列族(Column Family)。
其中列族名和数量需要在建表确定,但一个列族下面可以增加任意个列限定名。一个列限定名代表了实际中的一列,HBase将同一个列族下面的所有列存储在一起,所以HBase是一种面向列族式的数据库。

1.表逻辑结构

以下是一个HBase表的实例。其中有一个唯一主键,包含PersonalInfo列族、其中包括三个列name、age、phone;包含OfficeInfo列族、其中包括列tel和city。并且根据时间戳TimeStamp会存储多版本数据。
在这里插入图片描述

2.RowKey

RowKey与关系型数据库中的主键类似,用来唯一标识某行数据。整个表是按照RowKey进行排序。HBase按照RowKey划分为多个Region存储在不同的Region Server上,可以分布式对表进行存储和读取。

3.Column Family

Column Family是列族,一个列族可以包含多列。同一个列族中列数据都存储在Region的一个Store中。

4.TimeStamp

TimeStamp 是实现 HBase 多版本的关键。在HBase 中,使用不同 TimeStamp 来标识相同RowKey对应的不同版本的数据。

5.存储结构

HBase表根据主键水平拆分成多个region,每个region根据列族拆分为Store,每个Store包含一个内存MemStore和零个或者多个StoreFile,StoreFile以HFile文件形式存储在HDFS上。
HBase表的存储结构如下图:
在这里插入图片描述

四、HBase架构图

HBase采用Master/Slave架构搭建集群,属于Hadoop生态系统的一部分。由HMaster节点、HRegionServer节点、Zookeeper集群组成,而数据会存储在HDFS中。整体架构如下图:
在这里插入图片描述
对HBase架构组成的每一个部分介绍如下。

1.Client

用户访问HBase的客户端,主要是包含HBase的接口,会缓存元数据来加快对HBase的访问。

2.Zookeeper

Zookeeper主要协调和管理HMaster和HRegionServer。HMaster和HRegionServer启动时会向Zookeeper进行注册。作用如下:

  • 保证任何时候,集群中只有一个HMaster。
  • 存储所有HRegion的寻址入口。
  • 实时监控HRegionServer的上线和下线信息,并通知给HMaster
  • 存储HBase的Schema和Table元数据

3.HMaster

负责管理RegionServer并实现负载均衡,管理和分配Region,管理namespace和table元数据。

4.HRegionServer

用来维护HMaster分配的region,处理这些region的读写请求,并且负责将运行过程中过的region进行切分。

5.HRegion

Region是HBase中分布式存储和负责均衡的最小单位。HBase表按照行方向被拆分为多个Region。不同的Region可以分布在不同的HRegionServer上,同一个Region只能在同一个HRegionServer上。当Region的某个列族达到一定阀值会被拆分成两个新的Region。

6.Store

每个Region按照ColumnFamily拆分成Store,一个Region由一个或者多个Store组成。每个ColumnFamliy会建一个Store,一个Store由一个memStore和多个StoreFile组成。

7.StoreFile

memStore中的数据写到文件之后就是StoreFile。StoreFIle底层就是HFile的格式保存在存储系统中。

8.HLog

记录数据的所有变更和操作日志,用来故障恢复。当Region Server出现故障,可以通过HLog恢复数据

五、元数据存储

1.元数据表

HBase中有一个系统表hbase:meta来存储HBase元数据。该表保存了所有的Region信息,hbase:meta也是一个HBase表被HRegionServer管理,hbase:meta表的位置信息保存在Zookeeper中。

2.数据结构

元数据表有一个RowKey和一个ColumnFamily组成,其中RowKey包括表名、起始Key、region编号。只包含一个info列族,包含三列:

  • info:regioninfo:regionId,tableName,startKey,endKey,offline,split,replicaId;
  • info:server:HRegionServer对应的server:port;
  • info:serverstartcode:HRegionServer的启动时间戳。

六、写流程

HBase的写入过程由于相当于添加新记录,因此写数据比读数据快,整体流程如下:
在这里插入图片描述

1.获取Meta元数据

首先需要知道表的元数据,也就是要知道表的region列表,这个信息时维护在meta表中。
1.1 client访问zookeeper获取Meta表所在的RegionServer信息
1.2 从zookeeper节点返回meta的RegionServer1信息

2.获取RegionServer

从Meta表中查询表的Region信息以及负责Region维护的RegionServer信息。
2.3 根据表名和RowKey向meta所在的RegionServer1发送查询请求
2.4 RegionServer1找到对应的meta的记录,返回对应Region信息,其中包括RegionServer2信息。Client会缓存此Region信息。

3.发送写入请求

向RegionServer2发送写请求。
3.5 向Region所在的RegionServer2发送写请求
3.6 RegionServer2将数据先写入到HLog,为了数据的持久化和恢复
3.7 RegionServer2将数据写入到MemStore。
3.8 RegionServer2返回给Client告知写入成功。

七、读流程

HBase读取数据需要返回所有版本数据,所以可能需要查询所有HFile文件,读性能比写慢了两个数量级。读取流程获取Meta元数据和RegionServer的过程和写过程一致。
在这里插入图片描述

1.获取Meta元数据

跟写过程一致

2.获取RegionServer

跟写过程一致

3.发送读请求

向RegionServer2发送写请求。
3.5 向Region所在的RegionServer2发送写请求
3.6 先在MemStore进行查找
3.7 如果MemStore没有,则需要在BlockCache中查找
3.8 如果BlockCache没有,则需要在StoreFile上查找
3.9 如果StoreFile查到到数据,需要将数据写入到BlockCache,再返回给Client。

八、持久化

1.恢复机制

上边的写请求过程可知,数据会先写入到HLog,然后再写入到内存MemStore。

  • HLog保存的是RegionServer上所有的日志操作,是记录操作的一种日志。当MemStore数据还没有持久化时,可以通过HLog进行故障恢复,保证数据正确性和持久化。
  • MemStore是在内存中维持列族数据按照RowKey顺序排列,然后顺序写入到磁盘中。主要是为了将来检索优化,将数据写入到HDFS之前在内存中将数据完成排序。

2.MemStore 刷盘

MemStore维持当前在内存中的同一个列族数据按照RowKey有序,当MemStore达到一定时机时会将MemStore中数据以HFile形式持久化到文件系统中。Flush触发条件如下:

2.1 Memstore级别限制

当Region中任意一个MemStore的大小达到了上限(hbase.hregion.memstore.flush.size,默认128MB),会触发Memstore刷新

<property><name>hbase.hregion.memstore.flush.size</name><value>134217728</value>
</property>

2.2 Region级别限制

当Region中所有Memstore的大小总和达到了上限(hbase.hregion.memstore.block.multiplier * hbase.hregion.memstore.flush.size,默认 2* 128M = 256M),会触发memstore刷新

<property><name>hbase.hregion.memstore.flush.size</name><value>134217728</value>
</property>
<property><name>hbase.hregion.memstore.block.multiplier</name><value>4</value>
</property> 

2.3 Region Server级别限制

当一个Region Server中所有Memstore的大小总和超过低水位阈值hbase.regionserver.global.memstore.size.lower.limit*hbase.regionserver.global.memstore.size(前者默认值0.95),RegionServer开始强制flush

<property><name>hbase.regionserver.global.memstore.size.lower.limit</name><value>0.95</value>
</property>
<property><name>hbase.regionserver.global.memstore.size</name><value>0.4</value>
</property>
  • 先Flush Memstore最大的Region,再执行次大的,依次执行;
  • 如写入速度大于flush写出的速度,导致总MemStore大小超过高水位阈值,此时RegionServer会阻塞更新并强制执行flush,直到总MemStore大小低于低水位阈值

2.4 HLog数量上限

当一个Region Server中HLog数量达到上限(可通过参数hbase.regionserver.maxlogs配置)时,系统会选取最早的一个 HLog对应的一个或多个Region进行flush

2.5 定期刷新Memstore

默认周期为1小时,确保Memstore不会长时间没有持久化。为避免所有的MemStore在同一时间都进行flush导致的问题,定期的flush操作有20000左右的随机延时。

2.6 手动flush

用户可以通过shell命令flush ‘tablename’或者flush ‘region name’分别对一个表或者一个Region进行flush。

3.HFile 合并

memstore每次刷新都会生成一个新的HFile文件,由于触发机制导致可能生成的大部分新HFile文件都是小文件。这样会导致查询过程中需要遍历非常多的小文件,导致维护困难、影响查询性能和效率。为了查询优化和清理过期数据,所以会对HFile进行合并。Compaction分为两类:Minor Compaction和Major Compaction。
在这里插入图片描述

3.1 合并原理

合并原理是指从一个Store中的部分HFile文件整合成一个新的HFile文件,其中会从待合并数据从文件读出,然后按照由小到达排序后写入新文件。

3.2 Minor Compaction

选取部分小的相邻的HFile,将他们合并成一个更大的HFile。

3.3 Major Compaction

将一个Store中所有的HFile合并成一个HFile。同时会清理掉过期、删除、多版本数据。

总结

HBase是基于分布式文件系统HDFS构建的一个大数据、NoSQL、可拓展分布式数据库。采用Master/Slave架构、用Zookeeper进行元数据保存和协调工作。采用LSM-TREE作为存储引擎,由于HDFS不支持修改和更新,所以HBase中将修改和更新作为新记录存储到HDFS中。HBase用牺牲读性能来提升大数据写入能力。


参考链接

1.Hbase原理
2.HBase教程

相关文章:

HBase-架构与设计

HBase架构与设计 一、背景二、HBase概述1.设计特点2.适用场景2.1 海量数据2.2 稀疏数据2.3 多版本数据2.4 半结构或者非结构化数据 三、数据模型1.表逻辑结构2.RowKey3.Column Family4.TimeStamp5.存储结构 四、HBase架构图1.Client2.Zookeeper3.HMaster4.HRegionServer5.HRegi…...

SpringBoot基础系列:工具类使用

断言 Assert // 要求参数 object 必须为非空&#xff08;Not Null&#xff09;&#xff0c;否则抛出异常&#xff0c;不予放行 // 参数 message 参数用于定制异常信息。 void notNull(Object object, String message) // 要求参数必须空&#xff08;Null&#xff09;&#xff…...

使用 nohup java - jar 不输出日志

要在使用nohup java -jar命令时不输出日志&#xff0c;可以将标准输出和标准错误输出重定向到特殊设备文件/dev/null。这样做将会丢弃所有的输出。 以下是在Linux中使用nohup java -jar命令并禁止输出日志的示例&#xff1a; 复制代码 nohup java -jar your-application.jar …...

前端开发学习 (五) 生命周期函数、Ajax请求

关于vue实例的声明周期&#xff0c;从Vue实例创建、运行、到销毁期间&#xff0c;总是伴随着各种各样的事件&#xff0c;这些事件&#xff0c;统称为生命周期 &#xff08;https://cn.vuejs.org/v2/guide/instance.html#实例生命周期 &#xff09; 而声明周期勾子就是生命周期…...

TypeScript中的单件设计模式

基本概念 &#xff08;1&#xff09; 了解设计模式 设计模式通俗的讲&#xff0c;就是一种更好的编写代码方案&#xff0c;打个比喻&#xff1a;从上海到武汉&#xff0c;你可以选择做飞机&#xff0c;做轮船&#xff0c;开车&#xff0c;骑摩托车多种方式&#xff0c;把出行…...

【无标题】安装环境

这里写目录标题 清华镜像加速 安装cuda11.3 PyTorch 1.10.1https://pytorch.org/get-started/previous-versions/[如果没有可以点Previous pyTorch Versions&#xff0c;这里面有更多的更早的版本](https://pytorch.org/get-started/locally/) 复制非空文件夹cp: -r not specif…...

一. 初识数据结构和算法

数据结构与算法是一个达到高级程序员的敲门砖。当你脱离了语言的应用层面&#xff0c;去思考他的设计层面时&#xff0c;你就依旧已经开始初识数据结构与算法了 数据结构 什么是数据结构 对于数据结构的定义官方并没有统一的解释&#xff0c;在各个百科以及算法的书中&#xf…...

qt 使用百度在线地图 方法1

在使用Qt和百度在线地图时&#xff0c;你需要从百度地图开放平台获取API密钥&#xff0c;并使用该密钥在Qt应用程序中集成百度地图。以下是一个简单的示例&#xff0c;演示了如何在Qt中使用百度在线地图&#xff1a; 1&#xff0c;首先&#xff0c;从百度地图开放平台获取API密…...

轻快小miniconda3在linux下的安装配置-centos9stream-Miniconda3 Linux 64-bit

miniconda与anaconda的区别&#xff1a; Miniconda 和 Anaconda 是用于管理环境和安装软件包的 Python 发行版。它们之间的主要区别在于以下几点&#xff1a; 1. 安装内容和大小&#xff1a; Anaconda&#xff1a; Anaconda 是一个完整的 Python 数据科学平台&#xff0c;包含…...

C语言——字符函数和字符串函数(一)

&#x1f4dd;前言&#xff1a; 这篇文章对我最近学习的有关字符串的函数做一个总结和整理&#xff0c;主要讲解字符函数和字符串函数&#xff08;strlen&#xff0c;strcpy和strncpy&#xff0c;strcat和strncat&#xff09;的使用方法&#xff0c;使用场景和一些注意事项&…...

15.Java程序设计-基于SSM框架的微信小程序校园求职系统的设计与实现

摘要&#xff1a; 本研究旨在设计并实现一款基于SSM框架的微信小程序校园求职系统&#xff0c;以提升校园求职流程的效率和便捷性。通过整合微信小程序平台和SSM框架的优势&#xff0c;本系统涵盖了用户管理、职位发布与搜索、简历管理、消息通知等多个功能模块&#xff0c;为…...

蓝桥杯航班时间

蓝桥杯其他真题点这里&#x1f448; //飞行时间 - 时差 已过去的时间1 //飞行时间 时差 已过去的时间2 //两个式子相加会发现 飞行时间 两段时间差的和 >> 1import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader;public cl…...

openEuler学习05-kernel升级

周末没事&#xff0c;尝试下openEuler的kernel升级 [rootlocalhost ~]# more /etc/os-release NAME"openEuler" VERSION"20.03 (LTS-SP3)" ID"openEuler" VERSION_ID"20.03" PRETTY_NAME"openEuler 20.03 (LTS-SP3)" ANSI_…...

Linux-centos上如何配置管理NFS服务器?

Linux/centos上如何配置管理NFS服务器&#xff1f; 1 NFS基础了解 NFS&#xff08;Network File System&#xff09;即文件操作系统&#xff1b;NFS允许网络中不同计算机相互之间共享资源。 1.1 NFS概述 1980年由SUN发展出来的在UNIX&Linux系统间实现文件共享的一种方法…...

自然语言处理第2天:自然语言处理词语编码

​ ☁️主页 Nowl &#x1f525;专栏 《自然语言处理》 &#x1f4d1;君子坐而论道&#xff0c;少年起而行之 ​​ 文章目录 一、自然语言处理介绍二、常见的词编码方式1.one-hot介绍缺点 2.词嵌入介绍说明 三、代码演示四、结语 一、自然语言处理介绍 自然语言处理&#xf…...

ES6中的Promise

Promise 是一种异步编程解决方案&#xff0c;Promise是一个容器&#xff0c;保存着将来才会执行的代码&#xff1b;从语法角度来说Promise是一个对象&#xff0c;可以用来获取异步操作的消息。异步操作&#xff0c;同步解决&#xff0c;避免了层层嵌套的回调函数&#xff0c;可…...

载入了名字空间‘htmltools’ 0.5.6,但需要的是>= 0.5.7解决方案

解决方案&#xff1a;删除之前的旧版本安装包&#xff0c;安装新的包 1.卸载之前的安装包 2.关闭R&#xff0c;重新打开 3. # install.packages("htmltools") library(htmltools)...

Cisco 思科路由交换网络设备 安全基线 安全加固操作

目录 账号管理、认证授权 本机认证和授权ELK-Cisco-01-01-01 设置特权口令 ELK-Cisco-01-02-01 ELK-Cisco-01-02-02 ​​​​​​​登录要求 ELK-Cisco-01-03-01 ​​​​​​​ELK-Cisco-01-03-02 ELK-Cisco-01-03-03 日志配置 ELK-Cisco-02-01-01 通信协议 ELK-Cisco-…...

WPF仿网易云搭建笔记(0):项目搭建

文章目录 前言项目地址项目Nuget包搭建项目初始化项目架构App.xaml引入MateralDesign资源包 项目初步分析将标题栏去掉DockPanel初步布局 资源字典举例 结尾 前言 最近在找工作&#xff0c;发现没有任何的WPF可以拿的出手的工作经验&#xff0c;打算仿照网易云搭建一个WPF版本…...

Python爬虫利器:BeautifulSoup库详解

BeautifulSoup是Python中最流行的HTML解析库之一&#xff0c;它可以方便地从HTML文档中提取数据&#xff0c;并且支持多种解析器&#xff0c;可以适应不同的HTML文档格式。本文将介绍BeautifulSoup库的作用、用途和基本用法&#xff0c;帮助读者了解如何使用BeautifulSoup进行H…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...