viple模拟器使用(五):Web 2D模拟器中实现两距离局部最优迷宫算法
关于两距离局部最优迷宫算法的原理本文不再赘述,详情请参考:viple模拟器使用(四),归纳总结为:
前方有路,则直行;
前方无路,则右转90度,标记右转完成;右转完成后进行测量,记录测量值为右侧距离。再左转180度进行测量,将测量值(实际上为左侧距离)与右侧距离进行比较,比较出哪边更宽敞就走那一边。
核心思想:只使用前方的距离传感器,前方有路则直行;前方无路,则探测右侧、左侧距离,往更安全的那一边行进。
Web 2D中可以使用机器人驱动器俩控制两个电机,从而控制机器人前进、后退、左转、右转以及暂停。(下面案例展示,如何通过驱动器,使得机器人前进和左转,那么,后退和右转是一样的道理,就不再编写)
首先对主机进行配置,拖入2个机器人驱动器并进行配置
控制前进
控制左转
整体程序如下:
运行:
启动viple
再点击运行,选择:启动Web 2D模拟器。并按照如下顺序进行如下配置
按下字母键w,观察到机器人前进,按下字母键a,观察到机器人左转,测试完毕。该步骤实现了简单的Web 2D模拟器的线控模拟,能连接上viple程序,能运行viple程序。
Web 2D模拟器中实现两距离局部最优迷宫算法,实现核心:根据原理,每完成一步,就进行测试。
第1步:配置主机,通过按键初始化机器人前进并记录状态。
机器人驱动器,由于控制两个电机,所以,需要配置两个电机的端口号,假设左轮电机和右轮电机的端口号分别配置为5和8。由于Forward自定义活动是为了让机器人前进,所以,驱动器左右轮电机的驱动功率值设置为0~1之间的正数,且相等,才能实现机器人笔直前进,这里设置左右轮的驱动功率值均为为0.5
测试:运行后,按下字母q,机器人直行前进。
第2步:检测前方无路,进行右转90度。
使用前方的距离传感器进行测量,首先需要配置前方距离传感器的传感器端口号,端口号假设配置为1。
Right90
Stop
测试:运行后,机器人距离墙还有一定距离的时候,发现前方有障碍物,打印出数据,并暂停,再右转90度,再停下来。
第3步:检测右转90度完成后,测量距离,并将测量值存放到右侧变量中;再左转180度。
由于右转90度完成后,更新为新状态“右转90度完成了”,所以,可以在如果活动中直接进行判断。
测量出右侧距离后,存储了,并且还打印出来了,接下来做:再左转180度(可以参考右转90度的操作)
Left180:
测试:运行后,机器人左转180度,做完动作后暂停下来,并且可以在viple运行界面看到测出来的右侧距离。
第4步:检测左转180度完成后,再一次测量距离,测量值与右侧变量进行比较,如果是大于等于关系,则说明应该左转,此时机器人面向左方,所以无需调整方向,直接直行即可。如果是小于关系,则说明应该右转,此时机器人面向左方,所以需要调整方向到右方(可通过右转180度完成),再直行。
左侧距离 ≥ 右侧距离
左侧距离 < 右侧距离
Right180
测试:运行后,前方无路,先打印右侧距离,再打印左侧距离,再选择往更宽敞的那一边前进。
整体Main程序
第5步:观察运行现象,再进行适当调整参数,使得效果较佳即可。
测试:查看运行结果,点击查看运行结果(哔哩哔哩视频的清晰度可以调整,效果更佳),再进行调参数
从运行结果发现,当右侧大于左侧时,右侧测距进行了多次打印,这是因为没有对状态进行锁定。
第6步:运行展示
最终测试,选择较好的结果作为整体运行结果
相关文章:

viple模拟器使用(五):Web 2D模拟器中实现两距离局部最优迷宫算法
关于两距离局部最优迷宫算法的原理本文不再赘述,详情请参考:viple模拟器使用(四),归纳总结为: 前方有路,则直行; 前方无路,则右转90度,标记右转完成ÿ…...
每日一道算法题 3(2023-12-11)
题目描述: VLAN是一种对局域网设备进行逻辑划分的技术,为了标识不同的VLAN,引入VLAN ID(1-4094之间的整数)的概念。 定义一个VLAN ID的资源池(下称VLAN资源池),资源池中连续的VLAN用开始VLAN-结束VLAN表示,不连续的用单…...

【Android】查看keystore的公钥和私钥
前言: 查看前准备好.keystore文件,安装并配置openssl、keytool。文件路径中不要有中文。 一、查看keystore的公钥: 1.从keystore中获取MD5证书 keytool -list -v -keystore gamekeyold.keystore 2.导出公钥文件 keytool -export -alias …...
ChatGPT的常识
什么是ChatGPT? ChatGPT是一个基于GPT模型的聊天机器人,GPT即“Generative Pre-training Transformer”,是一种预训练的语言模型。ChatGPT使用GPT-2和GPT-3两种模型来生成自然语言响应,从而与人类进行真实的对话。 ChatGPT的设计…...

Spring Boot中的事务是如何实现的?懂吗?
SpringBoot中的事务管理,用得好,能确保数据的一致性和完整性;用得不好,可能会给性能带来不小的影响哦。 基本使用 在SpringBoot中,事务的使用非常简洁。首先,得感谢Spring框架提供的Transactional注解&am…...
应用安全:JAVA反序列化漏洞之殇
应用安全:JAVA反序列化漏洞之殇 概述 序列化是让Java对象脱离Java运行环境的一种手段,可以有效的实现多平台之间的通信、对象持久化存储。Java 序列化是指把 Java 对象转换为字节序列的过程便于保存在内存、文件、数据库中,ObjectOutputStream类的 wri…...
基于以太坊的智能合约开发Solidity(函数继承篇)
参考教程:【实战篇】1、函数重载_哔哩哔哩_bilibili 1、函数重载: pragma solidity ^0.5.17;contract overLoadTest {//不带参数function test() public{}//带一个参数function test(address account) public{}//参数类型不同,虽然uint160可…...

【论文极速读】LVM,视觉大模型的GPT时刻?
【论文极速读】LVM,视觉大模型的GPT时刻? FesianXu 20231210 at Baidu Search Team 前言 这一周,LVM在arxiv上刚挂出不久,就被众多自媒体宣传为『视觉大模型的GPT时刻』,笔者抱着强烈的好奇心,在繁忙工作之…...
TS基础语法
前言: 因为在写前端的时候,发现很多UI组件的语法都已经开始使用TS语法,不学习TS根本看不到懂,所以简单的学一下TS语法。为了看UI组件的简单代码,不至于一脸懵。 一、安装node 对于windows来讲,node版本高…...

【基于NLP的微博情感分析:从数据爬取到情感洞察】
基于NLP的微博情感分析:从数据爬取到情感洞察 背景数据集技术选型功能实现创新点 今天我将分享一个基于NLP的微博情感分析项目,通过Python技术、NLP模型和Flask框架,对微博数据进行清洗、分词、可视化,并利用NLP和贝叶斯进行情感分…...

Ubuntu 18.04使用Qemu和GDB搭建运行内核的环境
安装busybox 参考博客: 使用GDBQEMU调试Linux内核环境搭建 一文教你如何使用GDBQemu调试Linux内核 ubuntu22.04搭建qemu环境测试内核 交叉编译busybox 编译busybox出现Library m is needed, can’t exclude it (yet)的解释 S3C2440 制作最新busybox文件系统 https:…...
GEE——利用Landsat系列数据集进行1984-2023EVI指数趋势分析
简介: 利用Landsat系列数据集进行1984-2023EVI指数趋势分析其主要目的是进行长时序的分析,这里我们选用EVI指数,然后进行了4个月的分析,查看其最后的线性趋势以及分布状况。 EVI指数: EVI指数(Enhanced Vegetation Index,增强型植被指数)是一种反映植被生长状态的遥…...

JAVA安全之Spring参数绑定漏洞CVE-2022-22965
前言 在介绍这个漏洞前,介绍下在spring下的参数绑定 在Spring框架中,参数绑定是一种常见的操作,用于将HTTP请求的参数值绑定到Controller方法的参数上。下面是一些示例,展示了如何在Spring中进行参数绑定: 示例1&am…...

辨析旅行商问题(TSP)与车辆路径问题(VRP)
目录 前言旅行商问题 (TSP)问题介绍数学模型符号定义问题输入约束条件目标函数问题输出 解的空间解空间大小计算解释 车辆路径问题 (VRP)问题介绍TSP到VRP的过渡数学模型符号定义问题输入约束条件优化目标问题输出 解空间特殊情况一般情况 TSP 与 VRP 对比 前言 计划是通过本文…...
2024年JAVA招聘行情如何?
大家都在说Java求职不好找,是真的吗?我们来看看数据。 数据支持:根据TIOBE 5月份的编程语言排行榜,Java仍然是前三名之一。这意味着,Java在开发领域仍然占据重要地位。 而在中国的IT市场中,Java仍然是主要…...

【合集】SpringBoot——Spring,SpringBoot,SpringCloud相关的博客文章合集
前言 本篇博客是spring相关的博客文章合集,内容涵盖Spring,SpringBoot,SpringCloud相关的知识,包括了基础的内容,比如核心容器,springMVC,Data Access;也包括Spring进阶的相关知识&…...
yolov5 获取漏检图片脚本
yolov5 获取漏检图片脚本 获取样本分数在0.05到0.38直接的样本。 # YOLOv5 by Ultralytics, GPL-3.0 licenseimport argparse import json import os import sys import time from pathlib import Pathimport cv2 import numpy as np import torch import torch.backends.cud…...

Unity之OpenXR+XR Interaction Toolkit接入微软VR设备Windows Mixed Reality
前言 Windows Mixed Reality 是 Microsoft 用于增强和虚拟现实体验的VR设备,如下图所示: 在国内,它的使用率很低,一把都是国外使用,所以适配起来是相当费劲。 这台VR设备只能用于串流Windows,启动后,会自动连接Window的Mixed Reality程序,然后打开微软的增强现实门户…...

【小聆送书第二期】人工智能时代AIGC重塑教育
🌈个人主页:聆风吟 🔥系列专栏:网络奇遇记、数据结构 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋正文📝活动参与规则 参与活动方式文末详见。 📋正文 AI正迅猛地…...
中国移动公网IP申请过程
一、动机 由于从事互联网行业10年,一直从事移动端(前端)开发工作,未曾深入了解过后端技术,以至于工作10年也不算进入互联网的门。 所以准备在自己家用设备上搭建各种场景的服务器(云服务对个人来说成本偏…...

【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...