当前位置: 首页 > news >正文

viple模拟器使用(五):Web 2D模拟器中实现两距离局部最优迷宫算法

关于两距离局部最优迷宫算法的原理本文不再赘述,详情请参考:viple模拟器使用(四),归纳总结为:

前方有路,则直行;

前方无路,则右转90度,标记右转完成;右转完成后进行测量,记录测量值为右侧距离。再左转180度进行测量,将测量值(实际上为左侧距离)与右侧距离进行比较,比较出哪边更宽敞就走那一边。

核心思想:只使用前方的距离传感器,前方有路则直行;前方无路,则探测右侧、左侧距离,往更安全的那一边行进。 

Web 2D中可以使用机器人驱动器俩控制两个电机,从而控制机器人前进、后退、左转、右转以及暂停。(下面案例展示,如何通过驱动器,使得机器人前进和左转,那么,后退和右转是一样的道理,就不再编写)

首先对主机进行配置,拖入2个机器人驱动器并进行配置

控制前进

控制左转

整体程序如下:

运行:

启动viple

再点击运行,选择:启动Web 2D模拟器。并按照如下顺序进行如下配置

按下字母键w,观察到机器人前进,按下字母键a,观察到机器人左转,测试完毕。该步骤实现了简单的Web 2D模拟器的线控模拟,能连接上viple程序,能运行viple程序。


Web 2D模拟器中实现两距离局部最优迷宫算法,实现核心:根据原理,每完成一步,就进行测试。 

第1步:配置主机,通过按键初始化机器人前进并记录状态。

 

机器人驱动器,由于控制两个电机,所以,需要配置两个电机的端口号,假设左轮电机和右轮电机的端口号分别配置为5和8。由于Forward自定义活动是为了让机器人前进,所以,驱动器左右轮电机的驱动功率值设置为0~1之间的正数,且相等,才能实现机器人笔直前进,这里设置左右轮的驱动功率值均为为0.5

测试:运行后,按下字母q,机器人直行前进。

第2步:检测前方无路,进行右转90度。

使用前方的距离传感器进行测量,首先需要配置前方距离传感器的传感器端口号,端口号假设配置为1。

Right90

Stop

测试:运行后,机器人距离墙还有一定距离的时候,发现前方有障碍物,打印出数据,并暂停,再右转90度,再停下来。

第3步:检测右转90度完成后,测量距离,并将测量值存放到右侧变量中;再左转180度。

由于右转90度完成后,更新为新状态“右转90度完成了”,所以,可以在如果活动中直接进行判断。

测量出右侧距离后,存储了,并且还打印出来了,接下来做:再左转180度(可以参考右转90度的操作)

Left180:

测试:运行后,机器人左转180度,做完动作后暂停下来,并且可以在viple运行界面看到测出来的右侧距离。

   

第4步:检测左转180度完成后,再一次测量距离,测量值与右侧变量进行比较,如果是大于等于关系,则说明应该左转,此时机器人面向左方,所以无需调整方向,直接直行即可。如果是小于关系,则说明应该右转,此时机器人面向左方,所以需要调整方向到右方(可通过右转180度完成),再直行。

左侧距离 ≥ 右侧距离

左侧距离 < 右侧距离

Right180

测试:运行后,前方无路,先打印右侧距离,再打印左侧距离,再选择往更宽敞的那一边前进。

整体Main程序

第5步:观察运行现象,再进行适当调整参数,使得效果较佳即可。

测试:查看运行结果,点击查看运行结果(哔哩哔哩视频的清晰度可以调整,效果更佳),再进行调参数

从运行结果发现,当右侧大于左侧时,右侧测距进行了多次打印,这是因为没有对状态进行锁定。

第6步:运行展示

最终测试,选择较好的结果作为整体运行结果

相关文章:

viple模拟器使用(五):Web 2D模拟器中实现两距离局部最优迷宫算法

关于两距离局部最优迷宫算法的原理本文不再赘述,详情请参考:viple模拟器使用(四),归纳总结为: 前方有路,则直行; 前方无路,则右转90度,标记右转完成&#xff…...

每日一道算法题 3(2023-12-11)

题目描述: VLAN是一种对局域网设备进行逻辑划分的技术,为了标识不同的VLAN,引入VLAN ID(1-4094之间的整数)的概念。 定义一个VLAN ID的资源池(下称VLAN资源池),资源池中连续的VLAN用开始VLAN-结束VLAN表示,不连续的用单…...

【Android】查看keystore的公钥和私钥

前言: 查看前准备好.keystore文件,安装并配置openssl、keytool。文件路径中不要有中文。 一、查看keystore的公钥: 1.从keystore中获取MD5证书 keytool -list -v -keystore gamekeyold.keystore 2.导出公钥文件 keytool -export -alias …...

ChatGPT的常识

什么是ChatGPT? ChatGPT是一个基于GPT模型的聊天机器人,GPT即“Generative Pre-training Transformer”,是一种预训练的语言模型。ChatGPT使用GPT-2和GPT-3两种模型来生成自然语言响应,从而与人类进行真实的对话。 ChatGPT的设计…...

Spring Boot中的事务是如何实现的?懂吗?

SpringBoot中的事务管理,用得好,能确保数据的一致性和完整性;用得不好,可能会给性能带来不小的影响哦。 基本使用 在SpringBoot中,事务的使用非常简洁。首先,得感谢Spring框架提供的Transactional注解&am…...

应用安全:JAVA反序列化漏洞之殇

应用安全:JAVA反序列化漏洞之殇 概述 序列化是让Java对象脱离Java运行环境的一种手段,可以有效的实现多平台之间的通信、对象持久化存储。Java 序列化是指把 Java 对象转换为字节序列的过程便于保存在内存、文件、数据库中,ObjectOutputStream类的 wri…...

基于以太坊的智能合约开发Solidity(函数继承篇)

参考教程:【实战篇】1、函数重载_哔哩哔哩_bilibili 1、函数重载: pragma solidity ^0.5.17;contract overLoadTest {//不带参数function test() public{}//带一个参数function test(address account) public{}//参数类型不同,虽然uint160可…...

【论文极速读】LVM,视觉大模型的GPT时刻?

【论文极速读】LVM,视觉大模型的GPT时刻? FesianXu 20231210 at Baidu Search Team 前言 这一周,LVM在arxiv上刚挂出不久,就被众多自媒体宣传为『视觉大模型的GPT时刻』,笔者抱着强烈的好奇心,在繁忙工作之…...

TS基础语法

前言: 因为在写前端的时候,发现很多UI组件的语法都已经开始使用TS语法,不学习TS根本看不到懂,所以简单的学一下TS语法。为了看UI组件的简单代码,不至于一脸懵。 一、安装node 对于windows来讲,node版本高…...

【基于NLP的微博情感分析:从数据爬取到情感洞察】

基于NLP的微博情感分析:从数据爬取到情感洞察 背景数据集技术选型功能实现创新点 今天我将分享一个基于NLP的微博情感分析项目,通过Python技术、NLP模型和Flask框架,对微博数据进行清洗、分词、可视化,并利用NLP和贝叶斯进行情感分…...

Ubuntu 18.04使用Qemu和GDB搭建运行内核的环境

安装busybox 参考博客: 使用GDBQEMU调试Linux内核环境搭建 一文教你如何使用GDBQemu调试Linux内核 ubuntu22.04搭建qemu环境测试内核 交叉编译busybox 编译busybox出现Library m is needed, can’t exclude it (yet)的解释 S3C2440 制作最新busybox文件系统 https:…...

GEE——利用Landsat系列数据集进行1984-2023EVI指数趋势分析

简介: 利用Landsat系列数据集进行1984-2023EVI指数趋势分析其主要目的是进行长时序的分析,这里我们选用EVI指数,然后进行了4个月的分析,查看其最后的线性趋势以及分布状况。 EVI指数: EVI指数(Enhanced Vegetation Index,增强型植被指数)是一种反映植被生长状态的遥…...

JAVA安全之Spring参数绑定漏洞CVE-2022-22965

前言 在介绍这个漏洞前,介绍下在spring下的参数绑定 在Spring框架中,参数绑定是一种常见的操作,用于将HTTP请求的参数值绑定到Controller方法的参数上。下面是一些示例,展示了如何在Spring中进行参数绑定: 示例1&am…...

辨析旅行商问题(TSP)与车辆路径问题(VRP)

目录 前言旅行商问题 (TSP)问题介绍数学模型符号定义问题输入约束条件目标函数问题输出 解的空间解空间大小计算解释 车辆路径问题 (VRP)问题介绍TSP到VRP的过渡数学模型符号定义问题输入约束条件优化目标问题输出 解空间特殊情况一般情况 TSP 与 VRP 对比 前言 计划是通过本文…...

2024年JAVA招聘行情如何?

大家都在说Java求职不好找,是真的吗?我们来看看数据。 数据支持:根据TIOBE 5月份的编程语言排行榜,Java仍然是前三名之一。这意味着,Java在开发领域仍然占据重要地位。 而在中国的IT市场中,Java仍然是主要…...

【合集】SpringBoot——Spring,SpringBoot,SpringCloud相关的博客文章合集

前言 本篇博客是spring相关的博客文章合集,内容涵盖Spring,SpringBoot,SpringCloud相关的知识,包括了基础的内容,比如核心容器,springMVC,Data Access;也包括Spring进阶的相关知识&…...

yolov5 获取漏检图片脚本

yolov5 获取漏检图片脚本 获取样本分数在0.05到0.38直接的样本。 # YOLOv5 by Ultralytics, GPL-3.0 licenseimport argparse import json import os import sys import time from pathlib import Pathimport cv2 import numpy as np import torch import torch.backends.cud…...

Unity之OpenXR+XR Interaction Toolkit接入微软VR设备Windows Mixed Reality

前言 Windows Mixed Reality 是 Microsoft 用于增强和虚拟现实体验的VR设备,如下图所示: 在国内,它的使用率很低,一把都是国外使用,所以适配起来是相当费劲。 这台VR设备只能用于串流Windows,启动后,会自动连接Window的Mixed Reality程序,然后打开微软的增强现实门户…...

【小聆送书第二期】人工智能时代AIGC重塑教育

🌈个人主页:聆风吟 🔥系列专栏:网络奇遇记、数据结构 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋正文📝活动参与规则 参与活动方式文末详见。 📋正文 AI正迅猛地…...

中国移动公网IP申请过程

一、动机 由于从事互联网行业10年,一直从事移动端(前端)开发工作,未曾深入了解过后端技术,以至于工作10年也不算进入互联网的门。 所以准备在自己家用设备上搭建各种场景的服务器(云服务对个人来说成本偏…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...

【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)

旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据!该数据集源自2025年4月发表于《地理学报》的论文成果…...