当前位置: 首页 > news >正文

GEE——利用Landsat系列数据集进行1984-2023EVI指数趋势分析

简介:

利用Landsat系列数据集进行1984-2023EVI指数趋势分析其主要目的是进行长时序的分析,这里我们选用EVI指数,然后进行了4个月的分析,查看其最后的线性趋势以及分布状况。

EVI指数:

EVI指数(Enhanced Vegetation Index,增强型植被指数)是一种反映植被生长状态的遥感指数,它结合了植被指数的红光波段和近红外波段的信息,可以消除植被覆盖度、土壤背景和大气影响等因素对遥感数据的影响,用于研究植被生长和陆地生态系统的动态变化。EVI指数的计算公式为:EVI=(2.5*(NIR-Red))/(NIR+6*Red-7.5*Blue+1),其中NIR、Red和Blue分别为近红外、红光和蓝光波段反射率。EVI指数的取值范围在-1到1之间,数值越大表示植被覆盖度越高,反之则越低。

函数:

ee.Filter.calendarRange(start, endfield)这个用来筛选指定年月日特定时间的函数

Returns a filter that passes if the object's timestamp falls within the given range of a calendar field. The monthday_of_yearday_of_month, and day_of_week are 1-based. Times are assumed to be in UTC. Weeks are assumed to begin on Monday as day 1. If end < start then this tests for value >= start OR value <= end, to allow for wrapping.

Arguments:

start (Integer):

The start of the desired calendar field, inclusive.

end (Integer, default: null):

The end of the desired calendar field, inclusive. Defaults to the same value as start.

field (String, default: "day_of_year"):

The calendar field to filter over. Options are: yearmonthhourminuteday_of_yearday_of_month, and day_of_week.

Returns: Filter

ee.ImageCollection.fromImages(images)从列表中讲影像转化为影像集合

Returns the image collection containing the given images.

Arguments:

images (List):

The images to include in the collection.

Returns: ImageCollection

ee.Algorithms.If(conditiontrueCasefalseCase)这个是防止数据集中出现没有影像的情况,然后进行条件筛选

Selects one of its inputs based on a condition, similar to an if-then-else construct.

Arguments:

condition (Object, default: null):

The condition that determines which result is returned. If this is not a boolean, it is interpreted as a boolean by the following rules:

  • Numbers that are equal to 0 or a NaN are false.

  • Empty strings, lists and dictionaries are false.

  • Null is false.

  • Everything else is true.

trueCase (Object, default: null):

The result to return if the condition is true.

falseCase (Object, default: null):

The result to return if the condition is false.

Returns: Object

ui.Chart.feature.groups(features, xProperty, yProperty, seriesProperty)按照矢量组加载时序图表

Generates a Chart from a set of features. Plots the value of a given property across groups of features. Features with the same value of groupProperty will be grouped and plotted as a single series.

  • X-axis = xProperty values.

  • Y-axis = yProperty values.

  • Series = Feature groups, by seriesProperty.

Returns a chart.

Arguments:

features (Feature|FeatureCollection|List<Feature>):

The features to include in the chart.

xProperty (String):

Property to be used as the label for each feature on the x-axis.

yProperty (String):

Property to be plotted on the y-axis.

seriesProperty (String):

Property used to determine feature groups. Features with the same value of groupProperty will be plotted as a single series on the chart.

Returns: ui.Chart

代码:

var counties = ee.FeatureCollection("TIGER/2018/Counties"),elev = ee.Image("USGS/NED"),wdpa = ee.FeatureCollection("WCMC/WDPA/current/polygons"),slr_high = ee.FeatureCollection("users/caitlittlef/Acadia_SLR"),marsh = ee.FeatureCollection("users/caitlittlef/Acadia_marsh"),l8 = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2"),l5 = ee.ImageCollection("LANDSAT/LT05/C02/T1_L2"),margin = ee.FeatureCollection("users/caitlittlef/Acadia_marsh_slr_margin"),slr_buff = ee.FeatureCollection("users/caitlittlef/Acadia_SLR_buffer"),marsh_buff = ee.FeatureCollection("users/caitlittlef/Acadia_marsh_buffer"),bass_harbor = /* color: #90d614 */ee.Geometry.Point([-68.34446051531992, 44.257472150621076]),thompson_island = /* color: #90d614 */ee.Geometry.Point([-68.36250246923403, 44.4225955588721]),babson_creek = /* color: #90d614 */ee.Geometry.Point([-68.32728158629772, 44.37497962957902]),sch

相关文章:

GEE——利用Landsat系列数据集进行1984-2023EVI指数趋势分析

简介: 利用Landsat系列数据集进行1984-2023EVI指数趋势分析其主要目的是进行长时序的分析,这里我们选用EVI指数,然后进行了4个月的分析,查看其最后的线性趋势以及分布状况。 EVI指数: EVI指数(Enhanced Vegetation Index,增强型植被指数)是一种反映植被生长状态的遥…...

JAVA安全之Spring参数绑定漏洞CVE-2022-22965

前言 在介绍这个漏洞前&#xff0c;介绍下在spring下的参数绑定 在Spring框架中&#xff0c;参数绑定是一种常见的操作&#xff0c;用于将HTTP请求的参数值绑定到Controller方法的参数上。下面是一些示例&#xff0c;展示了如何在Spring中进行参数绑定&#xff1a; 示例1&am…...

辨析旅行商问题(TSP)与车辆路径问题(VRP)

目录 前言旅行商问题 (TSP)问题介绍数学模型符号定义问题输入约束条件目标函数问题输出 解的空间解空间大小计算解释 车辆路径问题 (VRP)问题介绍TSP到VRP的过渡数学模型符号定义问题输入约束条件优化目标问题输出 解空间特殊情况一般情况 TSP 与 VRP 对比 前言 计划是通过本文…...

2024年JAVA招聘行情如何?

大家都在说Java求职不好找&#xff0c;是真的吗&#xff1f;我们来看看数据。 数据支持&#xff1a;根据TIOBE 5月份的编程语言排行榜&#xff0c;Java仍然是前三名之一。这意味着&#xff0c;Java在开发领域仍然占据重要地位。 而在中国的IT市场中&#xff0c;Java仍然是主要…...

【合集】SpringBoot——Spring,SpringBoot,SpringCloud相关的博客文章合集

前言 本篇博客是spring相关的博客文章合集&#xff0c;内容涵盖Spring&#xff0c;SpringBoot&#xff0c;SpringCloud相关的知识&#xff0c;包括了基础的内容&#xff0c;比如核心容器&#xff0c;springMVC&#xff0c;Data Access&#xff1b;也包括Spring进阶的相关知识&…...

yolov5 获取漏检图片脚本

yolov5 获取漏检图片脚本 获取样本分数在0.05到0.38直接的样本。 # YOLOv5 by Ultralytics, GPL-3.0 licenseimport argparse import json import os import sys import time from pathlib import Pathimport cv2 import numpy as np import torch import torch.backends.cud…...

Unity之OpenXR+XR Interaction Toolkit接入微软VR设备Windows Mixed Reality

前言 Windows Mixed Reality 是 Microsoft 用于增强和虚拟现实体验的VR设备,如下图所示: 在国内,它的使用率很低,一把都是国外使用,所以适配起来是相当费劲。 这台VR设备只能用于串流Windows,启动后,会自动连接Window的Mixed Reality程序,然后打开微软的增强现实门户…...

【小聆送书第二期】人工智能时代AIGC重塑教育

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;网络奇遇记、数据结构 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;正文&#x1f4dd;活动参与规则 参与活动方式文末详见。 &#x1f4cb;正文 AI正迅猛地…...

中国移动公网IP申请过程

一、动机 由于从事互联网行业10年&#xff0c;一直从事移动端&#xff08;前端&#xff09;开发工作&#xff0c;未曾深入了解过后端技术&#xff0c;以至于工作10年也不算进入互联网的门。 所以准备在自己家用设备上搭建各种场景的服务器&#xff08;云服务对个人来说成本偏…...

动态获取绝对路径

在Python中&#xff0c;可以使用 os模块 来获取当前工作目录的路径&#xff0c;并使用 os.path.join()函数 将相对路径与当前工作目录结合起来&#xff0c;形成一个动态获取的绝对路径 以下是一个简单的例子&#xff1a; import os# 获取当前工作目录的路径 current_director…...

pytorch中的归一化:BatchNorm、LayerNorm 和 GroupNorm

1 归一化概述 训练深度神经网络是一项具有挑战性的任务。 多年来&#xff0c;研究人员提出了不同的方法来加速和稳定学习过程。 归一化是一种被证明在这方面非常有效的技术。 1.1 为什么要归一化 数据的归一化操作是数据处理的一项基础性工作&#xff0c;在一些实际问题中&am…...

RocketMq源码分析(九)--顺序消息

文章目录 一、顺序消息二、顺序消息消费过程1、消息队列负载2、消息拉取3、消息消费4、消息进度存储 三、总结 一、顺序消息 RocketMq在同一个队列中可以保证消息被顺序消费&#xff0c;所以如果要做到消息顺序消费&#xff0c;可以将消费主题&#xff08;topic&#xff09;设置…...

Windows下nginx的启动,重启,关闭等功能bat脚本

echo off rem 提供Windows下nginx的启动&#xff0c;重启&#xff0c;关闭功能echo begincls ::ngxin 所在的盘符 set NGINX_PATHG:::nginx 所在目录 set NGINX_DIRG:\projects\nginx-1.24.0\ color 0a TITLE Nginx 管理程序增强版CLSecho. echo. ** Nginx 管理程序 *** echo.…...

Python 字典:dic = {} 和 dic = defaultdict(list)之间的区别

d defaultdict(list) 和 d {} 在Python中代表了两种不同类型的字典初始化方式&#xff0c;它们之间有几个关键的区别&#xff1a; 1、类型 d defaultdict(list)&#xff1a;这里使用的是 collections 模块中的 defaultdict 类。它是一个字典的子类&#xff0c;提供了一个默…...

绘图 Seaborn 10个示例

绘图 Seaborn 是什么安装使用显示中文及负号散点图箱线图小提琴图堆叠柱状图分面绘图分类散点图热力图成对关系图线图直方图 是什么 Seaborn 是一个Python数据可视化库&#xff0c;它基于Matplotlib。Seaborn提供了高级的绘图接口&#xff0c;可以用来绘制各种统计图形&#xf…...

airserver mac 7.27官方破解版2024最新安装激活图文教程

airserver mac 7.27官方破解版是一款好用的airplay投屏工具&#xff0c;可以轻松将ios荧幕镜像&#xff08;airplay&#xff09;至mac上&#xff0c;在mac平台上实现视频、音频、幻灯片等文件资源的接收及投放演示操作&#xff0c;解决iphone或ipad的屏幕录像问题&#xff0c;满…...

文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《考虑移动式储能调度的配电网灾后多源协同孤岛运行策略》

这篇文章的标题表明研究的主题是在配电网发生灾害后&#xff0c;采用一种策略来实现多源协同孤岛运行&#xff0c;并在这个过程中特别考虑了移动式储能的调度。 让我们逐步解读标题的关键词&#xff1a; 考虑移动式储能调度&#xff1a; 文章关注的焦点之一是移动式储能系统的…...

Spring Boot 优雅地处理重复请求

前 言 对于一些用户请求&#xff0c;在某些情况下是可能重复发送的&#xff0c;如果是查询类操作并无大碍&#xff0c;但其中有些是涉及写入操作的&#xff0c;一旦重复了&#xff0c;可能会导致很严重的后果&#xff0c;例如交易的接口如果重复请求可能会重复下单。 重复的场…...

TailwindCSS 多主题色配置

TailwindCSS 多主题色配置 现在大多数网站都支持主题色变换&#xff0c;比如切换深色模式。那么我们该如何进行主题色配置呢&#xff1f; tailwind dark tailwind 包含一个 dark变体&#xff0c;当启用深色模式时&#xff0c;可以为网站设置不同样式 <div class"bg-whi…...

Vue3:表格单元格内容由:图标+具体内容 构成

一、背景 在Vue3项目中&#xff0c;想让单元格的内容是由 &#xff1a;图标具体内容组成的&#xff0c;类似以下效果&#xff1a; 二、图标 Element-Plus 可以在Element-Plus里面找是否有符合需求的图标iconfont 如果Element-Plus里面没有符合需求的&#xff0c;也可以在这…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...