【原创】【一类问题的通法】【真题+李6卷6+李4卷4(+李6卷5)分析】合同矩阵A B有PTAP=B,求可逆阵P的策略
【铺垫】二次型做的变换与相应二次型矩阵的对应:二次型f(x1,x2,x3)=xTAx,g(y1,y2,y3)=yTBy
①若f在可逆变换x=Py下化为g,即P为可逆阵,有PTAP=B;此时P来源于二次型f g代数配方的系数阵。A B合同
②若f在正交变换x=Qy下化为g,即Q为正交阵,有QTAP=Q^(-1)AQ=B;此时Q来源于矩阵方法求A,B的特征值特征向量,产生的过渡正交阵Q,使得QTAQ=B。A B合同且相似
·故若让求合同矩阵A B的可逆过渡阵P,使PTAP=B,P的构成来源可以是:A B对应二次型代数配方的可逆系数阵(此时二次型做可逆变换),或者A B化为对角阵的正交阵(此时二次型做正交变换)
【思考】若实对称阵A B合同但不相似,且有可逆阵Q使得QTAQ=B,那么Q可能为正交阵吗?
【回答】Q不可能为正交阵。因为若Q为正交阵,则Q(-1)=QT,则有Q(-1)AQ=B,此时A B相似,与条件矛盾
【问题引入】若实对称阵A B合同,考虑A B均非对角阵的一般情况,则有可逆阵P,使得PTAP=B,求P的策略(不考虑成对初等变换)
【分析】合同矩阵A B有相同的规范型,总存在对角阵∧和可逆阵C D,使得CTAC=∧=DTBD
若A B合同但不相似,C D中最多有1个正交阵〔不可能 C D 均为正交阵〕【但若A B不仅合同且相似,则C D可能均为正交阵,一般可逆阵也可。例如C D均为正交阵,24李6卷5线代大题:二次型f(xi)在正交变换x=Qy变换下化为二次型g(yi),让求Q;记f g对应二次型矩阵为A B,则有正交阵Q使得QTAQ=B,A B相似。将A B分别用一个正交阵Q1 Q2对角化(此不用配方),根据Q1 Q2即可得Q。下面说A B合同但不相似的情况】
【核心思想】①写A B对应的二次型f(xi),g(yi)
②选用代数配方法或正交矩阵法,将A B在可逆阵C D的作用下化为同一个对角阵∧,即CTAC=∧=DTBD(C D中可能存在最多一个正交阵)。后可根据C D求出PTAP=B的可逆阵P
·其实基本默认可优先考虑配方法,若给过铺垫可考虑一下正交阵。注意若A B合同但不相似,最终PTAP=B的P不可能为正交阵(见上提问),正交阵只可能与另一个可逆阵相乘构成P
【情况一】C D中无正交阵〔20数二大题+24李6数二第6套大题〕
【实操】①A用相应二次型f(xi)配方(即可逆变换x=Cz)到对角阵∧〔C为配方系数阵的逆〕
②B用相应二次型g(yi)配方(即可逆变换y=Dz)到同一个∧〔D为配方系数阵的逆〕
【注】(1)化为的同一个∧通常为f g共同的规范型
(2)20数二线代大题要自己将f g同时配方为同一规范型;24李4数二线代第一问已让求出了f到规范型的可逆变换x=Cy〔即已找到C使CTAC=∧=E〕。而A B都是正定阵,规范型均为E;第2问再求出g到规范型的可逆变换y=Dz〔即再求出D使DTBD=∧=E〕;结合C D即可求出PTAP=B的P
【情况二】若C D中有正交阵,设C为正交阵,D为可逆阵〔24李4数二第4套大题考法〕
【实操】①将A用正交阵C化到标准型∧,即CTAC=∧〔相应二次型f(xi)做正交变换x=Cz〕
②B用相应二次型g(yi)配方(即可逆变换y=Dz)到同一个∧〔D为配方系数阵的逆〕
【注】(1)f g化为的同一个∧通常为正交阵C的标准型
(2)24李4数二第4套线代大题套路,就是第一问让用正交变化x=Qy求出了f的标准型〔即求出了正交阵Q使QTAQ=∧1=diag(a+1,a+1,a-2),∧1则为A的标准型〕;第二问记B=(A-aE)²,注意到一问的Q也可使QTBQ=∧2=diag(1,1,4),此时再将B做可逆变换y=Dz配方到∧3=E〔即易写出可逆阵D,使DT∧2D=∧3=E(因为∧2原本就是对角阵了)〕。故有DTQTBQD(=∧3)=E,而让求PTBP=E,可取P=QD。本题虽形式上设问略有不同,但手法思想类似
(3)【注意】C D中有无正交阵其实可以“自定义”,如当下面情况可出现正交阵
①第一问让求过正交阵C,使CTAC=∧〔24李4数二第4套考法〕;则此时只需对B相应二次型g(yi)配方即可
②配方难配或矩阵AorB的特征值易求
相关文章:

【原创】【一类问题的通法】【真题+李6卷6+李4卷4(+李6卷5)分析】合同矩阵A B有PTAP=B,求可逆阵P的策略
【铺垫】二次型做的变换与相应二次型矩阵的对应:二次型f(x1,x2,x3)xTAx,g(y1,y2,y3)yTBy ①若f在可逆变换xPy下化为g,即P为可逆阵,有P…...
代码随想录算法训练营第六十天 | 84.柱状图中最大的矩形
84.柱状图中最大的矩形 题目链接:84. 柱状图中最大的矩形 本题与接雨水相近。按列来看,是要找到每一个柱子左右第一个比它矮的柱子,即对于该柱子来说所能组成的最大面积,将每个柱子所能得到的最大面积进行对比最终得到最大矩形。 …...

C#结合JavaScript实现多文件上传
目录 需求 引入 关键代码 操作界面 JavaScript包程序 服务端 ashx 程序 服务端上传后处理程序 小结 需求 在许多应用场景里,多文件上传是一项比较实用的功能。实际应用中,多文件上传可以考虑如下需求: 1、对上传文件的类型、大小…...

STM32——继电器
继电器工作原理 单片机供电 VCC GND 接单片机, VCC 需要接 3.3V , 5V 不行! 最大负载电路交流 250V/10A ,直流 30V/10A 引脚 IN 接收到 低电平 时,开关闭合。...

性能监控体系:InfluxDB Grafana Prometheus
InfluxDB 简介 什么是 InfluxDB ? InfluxDB 是一个由 InfluxData 开发的,开源的时序型数据库。它由 Go 语言写成,着力于高性能地查询与存储时序型数据。 InfluxDB 被广泛应用于存储系统的监控数据、IoT 行业的实时数据等场景。 可配合 Te…...

CS106L2023 and CS106B 环境配置(详细教程)
1.问题: (1)CS106L 运行./setup.sh 脚本时出错 (windows 请下载git,在git bash 打开运行) (2)CS106B,QT构建 构建错误:一般构建错误,例如 Erro…...

Docker-多容器应用
一、概述 到目前为止,你一直在使用单个容器应用。但是,现在您将 MySQL 添加到 应用程序堆栈。经常会出现以下问题 - “MySQL将在哪里运行?将其安装在同一个 容器还是单独运行?一般来说,每个容器都应该做一件事&#x…...

Golang导入导出Excel表格
最近项目开发中有涉及到Excel的导入与导出功能,特别是导出表格时需要特定的格式(单元格合并等),废话不多说,直接上代码了。 首先用到一个第三方库,实测还是很强大很好用的,就是这个https://git…...
基于Maven的Spring Boot应用版本号获取解析
引言 在Spring Boot应用的开发和部署中,了解应用的版本号对于管理和监控应用至关重要。本文将深入解析一种基于Maven打包的Spring Boot应用中,根据不同的运行环境获取应用版本号的解决方案。在开始介绍代码之前,我们先来了解一下可能的文件目…...
LLM微调(二)| 微调LLAMA-2和其他开源LLM的两种简单方法
本文将介绍两种开源工具来微调LLAMA-2。 一、使用autotrain-advanced微调LLAMA-2 AutoTrain是一种无代码工具,用于为自然语言处理(NLP)任务、计算机视觉(CV)任务、语音任务甚至表格任务训练最先进的模型。 1…...
AVP对纵向控制ESP(Ibooster)的需求规范
目录 1. 版本记录... 3 2. 文档范围和控制... 4 2.1 目的/范围... 4 2.2 文档冲突... 4 2.3 文档授权... 4 2.4 文档更改控制... 4 3. 功能概述... 5 4. 系统架构... 6 5. 主要安全目标... 7 5.1 …...

小模型学习(1)-人脸识别
【写作背景】因为最近一直在研究大模型,在与客户进行交流时,如果要将大模型的变革性能力讲清楚,就一定要能将AI小模型的一些原理和效果讲清楚,进而形成对比。当然这不是一件简单的事情,一方面大模型分析问题的的本质原…...

sublime Text使用
1、增加install 命令面板 工具(tool)->控制面板(command palette) -> 输入install ->安装第一个install package controller,以下安装过了,所以没展示 2、安装json格式化工具 点击install package,等几秒会进入控制面板࿰…...

基于深度学习的yolov7植物病虫害识别及防治系统
欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介简介YOLOv7 系统特性工作流程 二、功能三、系统四. 总结 一项目简介 # YOLOv7植物病虫害识别及防治系统介绍 简介 该系统基于深度学习技术,采…...
Leetcode 2963. Count the Number of Good Partitions
Leetcode 2963. Count the Number of Good Partitions 1. 解题思路2. 代码实现 题目链接:2963. Count the Number of Good Partitions 1. 解题思路 这一题根据题意,显然我们可以将其先分为 n n n个原子partition,确保任意两个partition之间…...

C语言动态内存经典笔试题分析
C语言动态内存经典笔试题分析 文章目录 C语言动态内存经典笔试题分析1. 题目一2. 题目二3. 题目三4. 题目四 1. 题目一 void GetMemory(char *p){p (char *)malloc(100);} void Test(void){char *str NULL;GetMemory(str);strcpy(str, "hello world");printf(str)…...
截断正态分布stats.truncnorm()X.rvs(10000)
就是在均值和方差之外,再指定正态分布随机数群的上下限,如 [ μ − 3 σ , μ 3 σ ] [\mu-3\sigma,\mu3\sigma] [μ−3σ,μ3σ] stats.truncnorm()参数 X stats.truncnorm(-2, 2, locmu, scalesigma) -2 2是截断的正态分布…...
第59天:django学习(八)
事务 事务是MySQL数据库中得一个重要概念,事务的目的:为了保证多个SQL语句执行成功,执行失败,前后保持一致,保证数据安全。 开启事务的三个关键字 start transaction commit rollback 开启事务 from django.db import transaction…...
举例说明自然语言处理(NLP)技术。
本文章由AI生成! 以下是自然语言处理(NLP)技术的一些例子: 机器翻译:将一种语言翻译成另一种语言的自动化过程。常见的机器翻译系统包括谷歌翻译,百度翻译等。 语音识别:将口头语言转换成文本…...

echarts地图marker自定义图标并添加点击事件
symbol如果引用https图片链接会报403,直接引用本地 series: [{type: scatter, // 使用散点图系列 coordinateSystem: geo, // 设置坐标系为地理坐标系 zlevel: 100,data: [{name: 上海,value: [121.48, 31.22], // 上海的经纬度坐标 symbol: image:// require(/…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...

GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...