当前位置: 首页 > news >正文

LLM微调(二)| 微调LLAMA-2和其他开源LLM的两种简单方法

本文将介绍两种开源工具来微调LLAMA-2。

一、使用autotrain-advanced微调LLAMA-2

        AutoTrain是一种无代码工具,用于为自然语言处理(NLP)任务、计算机视觉(CV)任务、语音任务甚至表格任务训练最先进的模型。

1) 安装相关库,使用huggingface_hub下载微调数据

!pip install autotrain-advanced!pip install huggingface_hub

2) 更新autotrain-advanced所需要的包

# update torch!autotrain setup --update-torch

3) 登录Huggingface

# Login to huggingfacefrom huggingface_hub import notebook_loginnotebook_login()

4) 开始微调LLAMA-2

! autotrain llm \--train \--model {MODEL_NAME} \--project-name {PROJECT_NAME} \--data-path data/ \--text-column text \--lr {LEARNING_RATE} \--batch-size {BATCH_SIZE} \--epochs {NUM_EPOCHS} \--block-size {BLOCK_SIZE} \--warmup-ratio {WARMUP_RATIO} \--lora-r {LORA_R} \--lora-alpha {LORA_ALPHA} \--lora-dropout {LORA_DROPOUT} \--weight-decay {WEIGHT_DECAY} \--gradient-accumulation {GRADIENT_ACCUMULATION}

核心参数含义

llm: 微调模型的类型

— project_name: 项目名称

— model: 需要微调的基础模型

— data_path: 指定微调所需要的数据,可以使用huggingface上的数据集

— text_column: 如果数据是表格,需要指定instructions和responses对应的列名

— use_peft: 指定peft某一种方法

— use_int4: 指定int 4量化

— learning_rate: 学习率

— train_batch_size: 训练批次大小

— num_train_epochs: 训练轮数大小

— trainer: 指定训练的方式

— model_max_length: 设置模型最大上下文窗口

— push_to_hub(可选): 微调好的模型是否需要存储到Hugging Face? 

— repo_id: 如果要存储微调好的模型到Hugging Face,需要指定repository ID

— block_size: 设置文本块大小

下面看一个具体的示例:

!autotrain llm--train--project_name "llama2-autotrain-openassitant"--model TinyPixel/Llama-2-7B-bf16-sharded--data_path timdettmers/openassistant-guanaco--text_column text--use_peft--use_int4--learning_rate 0.4--train_batch_size 3--num_train_epochs 2--trainer sft--model_max_length 1048--push_to_hub--repo_id trojrobert/llama2-autotrain-openassistant--block_size 1048 > training.log

二、使用TRL微调LLAMA-2

       TRL是一个全栈库,提供了通过强化学习来训练transformer语言模型一系列工具,包括从监督微调步骤(SFT)、奖励建模步骤(RM)到近端策略优化(PPO)步骤。

1)安装相关的库

!pip install -q -U trl peft transformers  datasets bitsandbytes wandb

2)从Huggingface导入数据集

from datasets import load_datasetdataset_name = "timdettmers/openassistant-guanaco"dataset = load_dataset(dataset_name, split="train")

3)量化配置,从Huggingface下载模型

import torchfrom transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig# quantizition configurationbnb_config = BitsAndBytesConfig(    load_in_4bit=True,    bnb_4bit_quant_type="nf4",    bnb_4bit_compute_dtype=torch.float16,)# download modelmodel_name = "TinyPixel/Llama-2-7B-bf16-sharded"model = AutoModelForCausalLM.from_pretrained(    model_name,    quantization_config=bnb_config,    trust_remote_code=True)model.config.use_cache = False

4)下载Tokenizer

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)tokenizer.pad_token = tokenizer.eos_token

5)创建PEFT配置

from peft import LoraConfig, get_peft_modellora_alpha = 16lora_dropout = 0.1lora_r = 64peft_config = LoraConfig(    lora_alpha=lora_alpha,    lora_dropout=lora_dropout,    r=lora_r,    bias="none",    task_type="CAUSAL_LM")

6)创建微调和训练配置

from transformers import TrainingArgumentsoutput_dir = "./results"per_device_train_batch_size = 4gradient_accumulation_steps = 4optim = "paged_adamw_32bit"save_steps = 100logging_steps = 10learning_rate = 2e-4max_grad_norm = 0.3max_steps = 100warmup_ratio = 0.03lr_scheduler_type = "constant"training_arguments = TrainingArguments(    output_dir=output_dir,    per_device_train_batch_size=per_device_train_batch_size,    gradient_accumulation_steps=gradient_accumulation_steps,    optim=optim,    save_steps=save_steps,    logging_steps=logging_steps,    learning_rate=learning_rate,    fp16=True,    max_grad_norm=max_grad_norm,    max_steps=max_steps,    warmup_ratio=warmup_ratio,    group_by_length=True,    lr_scheduler_type=lr_scheduler_type,)

7)创建SFTTrainer配置

from trl import SFTTrainermax_seq_length = 512trainer = SFTTrainer(    model=model,    train_dataset=dataset,    peft_config=peft_config,    dataset_text_field="text",    max_seq_length=max_seq_length,    tokenizer=tokenizer,    args=training_arguments,)

8)在微调的时候,对LN层使用float 32训练更稳定

for name, module in trainer.model.named_modules():    if "norm" in name:        module = module.to(torch.float32)

9)开始微调

trainer.train()

10)保存微调好的模型

model_to_save = trainer.model.module if hasattr(trainer.model, 'module') else trainer.model  # Take care of distributed/parallel trainingmodel_to_save.save_pretrained("outputs")

11)加载微调好的模型

lora_config = LoraConfig.from_pretrained('outputs')tuned_model = get_peft_model(model, lora_config)

12)测试微调好的模型效果

text = "What is a large language model?"device = "cuda:0"inputs = tokenizer(text, return_tensors="pt").to(device)outputs = tuned_model.generate(**inputs, max_new_tokens=50)print(tokenizer.decode(outputs[0], skip_special_tokens=True))

参考文献:

[1] https://trojrobert.medium.com/4-easier-ways-for-fine-tuning-llama-2-and-other-open-source-llms-eb3218657f6e

[2] https://colab.research.google.com/drive/1JMEi2VMNGMOTyfEcQZyp23EISUrWg5cg?usp=sharing

[3] https://colab.research.google.com/drive/1ctevXhrE60s7o9RzsxpIqq37EjyU9tBn?usp=sharing#scrollTo=bsbdrb5p2ONa

相关文章:

LLM微调(二)| 微调LLAMA-2和其他开源LLM的两种简单方法

本文将介绍两种开源工具来微调LLAMA-2。 一、使用autotrain-advanced微调LLAMA-2 AutoTrain是一种无代码工具,用于为自然语言处理(NLP)任务、计算机视觉(CV)任务、语音任务甚至表格任务训练最先进的模型。 1&#xf…...

AVP对纵向控制ESP(Ibooster)的需求规范

目录 1. 版本记录... 3 2. 文档范围和控制... 4 2.1 目的/范围... 4 2.2 文档冲突... 4 2.3 文档授权... 4 2.4 文档更改控制... 4 3. 功能概述... 5 4. 系统架构... 6 5. 主要安全目标... 7 5.1 …...

小模型学习(1)-人脸识别

【写作背景】因为最近一直在研究大模型,在与客户进行交流时,如果要将大模型的变革性能力讲清楚,就一定要能将AI小模型的一些原理和效果讲清楚,进而形成对比。当然这不是一件简单的事情,一方面大模型分析问题的的本质原…...

sublime Text使用

1、增加install 命令面板 工具(tool)->控制面板(command palette) -> 输入install ->安装第一个install package controller,以下安装过了,所以没展示 2、安装json格式化工具 点击install package,等几秒会进入控制面板&#xff0…...

基于深度学习的yolov7植物病虫害识别及防治系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介简介YOLOv7 系统特性工作流程 二、功能三、系统四. 总结 一项目简介 # YOLOv7植物病虫害识别及防治系统介绍 简介 该系统基于深度学习技术,采…...

Leetcode 2963. Count the Number of Good Partitions

Leetcode 2963. Count the Number of Good Partitions 1. 解题思路2. 代码实现 题目链接:2963. Count the Number of Good Partitions 1. 解题思路 这一题根据题意,显然我们可以将其先分为 n n n个原子partition,确保任意两个partition之间…...

C语言动态内存经典笔试题分析

C语言动态内存经典笔试题分析 文章目录 C语言动态内存经典笔试题分析1. 题目一2. 题目二3. 题目三4. 题目四 1. 题目一 void GetMemory(char *p){p (char *)malloc(100);} void Test(void){char *str NULL;GetMemory(str);strcpy(str, "hello world");printf(str)…...

截断正态分布stats.truncnorm()X.rvs(10000)

就是在均值和方差之外,再指定正态分布随机数群的上下限,如 [ μ − 3 σ , μ 3 σ ] [\mu-3\sigma,\mu3\sigma] [μ−3σ,μ3σ] stats.truncnorm()参数 X stats.truncnorm(-2, 2, locmu, scalesigma) -2 2是截断的正态分布…...

第59天:django学习(八)

事务 事务是MySQL数据库中得一个重要概念,事务的目的:为了保证多个SQL语句执行成功,执行失败,前后保持一致,保证数据安全。 开启事务的三个关键字 start transaction commit rollback 开启事务 from django.db import transaction…...

举例说明自然语言处理(NLP)技术。

本文章由AI生成! 以下是自然语言处理(NLP)技术的一些例子: 机器翻译:将一种语言翻译成另一种语言的自动化过程。常见的机器翻译系统包括谷歌翻译,百度翻译等。 语音识别:将口头语言转换成文本…...

echarts地图marker自定义图标并添加点击事件

symbol如果引用https图片链接会报403,直接引用本地 series: [{type: scatter, // 使用散点图系列 coordinateSystem: geo, // 设置坐标系为地理坐标系 zlevel: 100,data: [{name: 上海,value: [121.48, 31.22], // 上海的经纬度坐标 symbol: image:// require(/…...

C盘瘦身,C盘清理

以下只是我的C盘清理经验~ 一.【用软件简单清理C盘】 使用一些垃圾清理软件,简单的初步把C盘先清理一遍。(这种软件太多我就不推荐了……) 二.【WPS清理大师】 因为我电脑装了WPS,发现右键单击C盘有个选项【释放C盘空间】&#xf…...

STM32F103

提示:来源正点原子,参考STM32F103 战舰开发指南V1.3PDF资料 文章目录 前言一、pandas是什么?二、使用步骤 1.引入库2.读入数据总结 前言 提示:这里可以添加本文要记录的大概内容: 开发环境硬件普中科技,接…...

Unity使用打成图集的Sprite作为模型贴图使用的问题

大家好,我是阿赵。   有时候用Unity引擎做项目的时候,会遇到这样的需求,美术做了一些模型或者特效,然后策划想在游戏运行的时候,读取一些游戏图标放在特效或者模型上面当做贴图使用。   这个需求实现起来很简单&am…...

el-select赋值对象是对象时,出现赋值与展示不一致问题

代码逻辑类似&#xff1a;module 是个object { "appId": "", "id": 65, "name": "" } <el-form :model"form"><el-form-item label"申请模块" ><el-select v-model"…...

在 Node-RED 中引入 ECharts 实现数据可视化

Node-RED 提供了强大的可视化工具&#xff0c;而通过引入 ECharts 图表库&#xff0c;您可以更直观地呈现和分析数据。在这篇博客中&#xff0c;我们将介绍两种在 Node-RED 中实现数据可视化的方法&#xff1a;一种是引入本地 ECharts 库&#xff0c;另一种是直接使用 CDN&…...

docker资源限制

目录 系统压力测试工具stress 1. cpu资源限制 1.1 限制CPU Share 1.2 限制CPU 核数 1.3 CPU 绑定 2. mem资源限制 3. 限制IO 二、端口转发 三、容器卷 四、部署centos7容器应用 五、docker数据存储位置 六、docker网络 容器网络分类 在使用 docker 运行容器时&…...

探索HarmonyOS_开发软件安装

随着华为推出HarmonyOS NEXT 宣布将要全面启用鸿蒙原声应用&#xff0c;不在兼容安卓应用&#xff0c; 现在开始探索鸿蒙原生应用的开发。 HarmonyOS应用开发官网 - 华为HarmonyOS打造全场景新服务 鸿蒙官网 开发软件肯定要从这里下载 第一个为微软系统(windows)&#xff0c;第…...

CSS中控制元素水平布局的七个属性

元素的水平方向的布局 元素在其父元素中水平方向的位置由一下几个属性共同决定 margin-left border-left padding-left width padding-right border-right margin-right 一个元素在其父元素中&#xff0c;水平布局必须要满足以下…...

YOLOv8改进 | 2023检测头篇 | 利用AFPN改进检测头适配YOLOv8版(全网独家创新)

一、本文介绍 本文给大家带来的改进机制是利用今年新推出的AFPN&#xff08;渐近特征金字塔网络&#xff09;来优化检测头&#xff0c;AFPN的核心思想是通过引入一种渐近的特征融合策略&#xff0c;将底层、高层和顶层的特征逐渐整合到目标检测过程中。这种渐近融合方式有助于…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...