【高数:3 无穷小与无穷大】
【高数:3 无穷小与无穷大】
- 1 无穷小与无穷大
- 2 极限运算法则
- 3 极限存在原则
- 4 趋于无穷小的比较
参考书籍:毕文斌, 毛悦悦. Python漫游数学王国[M]. 北京:清华大学出版社,2022.
1 无穷小与无穷大
无穷大在sympy中用两个字母o表示无穷大,正无穷大为sy.oo,负无穷大为-sy.oo
import sympy as sy
x=sy.oo
print(1/x)
>>>0
lim x → 0 − 1 x \lim_{x \to 0^-} \frac{1}{x} limx→0−x1
x=sy.symbols('x')
print(sy.limit(1/x,x,0,dir='-'))
>>>-oo
2 极限运算法则
lim x → 3 x − 3 x 2 − 9 \lim_{x \to 3} \frac{x-3}{x^2-9} limx→3x2−9x−3
import sympy as sy
x=sy.symbols('x')
print(sy.limit((x-3)/(x**2-9),x,3,dir='+-'))
lim x → 1 2 x − 3 x 2 − 5 x + 4 \lim_{x \to 1} \frac{2x-3}{x^2-5x+4} limx→1x2−5x+42x−3
x=sy.symbols('x')
print(sy.limit((2*x-3)/(x**2-5*x+4),x,1,dir='-'))
print(sy.limit((2*x-3)/(x**2-5*x+4),x,1))
>>>-oo, oo 故趋于无穷时极限为无穷oo
lim x → ∞ 3 x 3 + 4 X 2 + 2 7 x 3 + 5 x 2 − 3 \lim_{x \to \infty} \frac{3x^3+4X^2+2}{7x^3+5x^2-3} limx→∞7x3+5x2−33x3+4X2+2
x=sy.symbols('x')
print(sy.limit((3*x**3+4*x**2+2)/(7*x**3+5*x**2-3),x,sy.oo,dir='-'))
print(sy.limit((3*x**3+4*x**2+2)/(7*x**3+5*x**2-3),x,-sy.oo,dir='+'))
>>>3/7,3/7 故趋于无穷时极限为3/7
当分子分母极限都不存在时, lim x → ∞ sin x x \lim_{x \to \infty} \frac{\sin x}{x} limx→∞xsinx
x=sy.symbols('x')
y=sy.sin(x)/x
print(sy.limit(y,x,sy.oo,dir='+'))
print(sy.limit(y,x,-sy.oo,dir='+'))
>>>0 , 0 故趋于无穷时极限为0
3 极限存在原则
eg1: lim x → 0 sin x x \lim_{x \to 0} \frac{\sin x}{x} limx→0xsinx
import sympy as sy
x=sy.symbols('x')
lim=sy.limit(sy.sin(x)/x,x,0,dir='+-')
print(lim)
>>>1
eg2: lim x → 0 arcsin x tan x \lim_{x \to 0} \frac{\arcsin x}{\tan x} limx→0tanxarcsinx
x=sy.symbols('x')
print(sy.limit(sy.asin(x)/sy.tan(x),x,0,dir='+-')) #sy.asin()指arcsin函数
>>>1
eg3: lim x → 0 1 − cos x x 2 \lim_{x \to 0} \frac{1- \cos x}{x^2} limx→0x21−cosx
x=sy.symbols('x')
print(sy.limit((1-sy.cos(x))/(x**2),x,0,dir='+-'))
>>>1/2
eg4: lim x → 0 ( 1 + x ) 1 x \lim_{x \to 0} (1+x)^{\frac{1}{x}} limx→0(1+x)x1
x=sy.symbols('x')
lim=sy.limit((1+x)**(1/x),x,0,dir='+-')
print(lim)
>>>E
eg5: lim x → ∞ ( 1 + 1 x ) x \lim_{x \to \infty} (1+\frac{1}{x})^x limx→∞(1+x1)x
x=sy.symbols('x')
lim=sy.limit((1+1/x)**x,x,sy.oo,dir='-')
print(lim)
print(lim.round(3))
print(sy.limit((1+1/x)**x,x,-sy.oo))
>>>E, 2.718, E
eg6: 说明数列 2 , 2 + 2 , 2 + 2 + 2 \sqrt{2} , \sqrt{2+\sqrt{2}},\sqrt{2+\sqrt{2+\sqrt{2}}} 2,2+2,2+2+2,···的极限存在
#用函数的递归机制定义数列
def a_complex_series(n):#退出条件if n<=0:return 2**0.5#一个函数如果调用自身,则这个函数就是一个递归函数return (2.0+a_complex_series(n-1))**0.5
#绘制前20个数的散点图
import matplotlib.pyplot as plt
import numpy as np
x=[]
y=[]
for i in range(20):x.append(i)y.append(a_complex_series(i))
print(np.array(y))
plt.scatter(x,y)
plt.show()
>>>[1.41421356 1.84775907 1.96157056 1.99036945 1.99759091 1.99939764
1.9998494 1.99996235 1.99999059 1.99999765 1.99999941 1.999999851.99999996 1.99999999 2. 2. 2. 2.
2. 2. ]

故极限为2
4 趋于无穷小的比较
eg1: lim x → 0 tan 2 x sin 5 x \lim_{x \to 0} \frac{\tan 2x}{\sin 5x} limx→0sin5xtan2x
from sympy import limit,sin,cos,tan,symbols #从sympy中仅导入这几个函数
x=symbols('x')
example_1=tan(2*x)/sin(5*x)
result=limit(example_1,x,0,dir='+-')
print(result)
>>>2/5
eg2: lim x → 0 sin x x 3 + 3 x \lim_{x \to 0} \frac{\sin x}{x^3+3x} limx→0x3+3xsinx
x=symbols('x')
example_2=sin(x)/(x**3+3*x)
result=limit(example_2,x,0,dir='+-')
print(result)
>>>1/3
eg3: lim x → 0 ( 1 + x 2 ) 1 / 3 − 1 cos x − 1 \lim_{x \to 0} \frac{(1+x^2)^{1/3}-1}{\cos x-1} limx→0cosx−1(1+x2)1/3−1
x=symbols('x')
example_3=((1+x**2)**(1/3)-1)/(cos(x)-1)
result=limit(example_3,x,0,dir='+-')
print(result)
>>>-2/3
相关文章:
【高数:3 无穷小与无穷大】
【高数:3 无穷小与无穷大】 1 无穷小与无穷大2 极限运算法则3 极限存在原则4 趋于无穷小的比较 参考书籍:毕文斌, 毛悦悦. Python漫游数学王国[M]. 北京:清华大学出版社,2022. 1 无穷小与无穷大 无穷大在sympy中用两个字母o表示无…...
C语言预读取技术 __builtin_prefetch
__builtin_prefetch 是一个编译器内置函数,用于在编译时向编译器发出指令,要求在执行期间预取内存数据。它通常用于提高程序的性能,特别是对于那些需要频繁访问内存的情况。 __builtin_prefetch 函数的语法如下:c __builtin_prefe…...
自动驾驶学习笔记(十三)——感知基础
#Apollo开发者# 学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往: 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo Beta宣讲和线下沙龙》免费报名—>传送门 文章目录 前言 传感器 测距原理 坐标系 标定 同…...
WLAN配置实验
本文记录了WLAN配置实践的过程,该操作在华为HCIA中属于相对较复杂的实验,记录过程备忘。这里不就WLAN原理解释,仅进行配置实践,可以作为学习原理时候的参考。本文使用华为ENSP进行仿真。实验拓扑图如下: 1.WLAN工作流程…...
java_web接收前端传的excel文件读取数据
#本次做一个将患者数据导入到某个模块的功能,前期集成的代码时不时出现异常,本次进行修改记录 //controller层/*** 导入患者数据*/RejectReplayRequestPostMapping("/importData")public Result<?> importData(HttpServletRequest req…...
在Vue开发中v-if指令和v-show指令的使用介绍和区别及使用场景
一、条件渲染 v-if v-if 指令用于条件性地渲染一块内容。这块内容只会在指令的表达式返回真值时才被渲染。 <h1 v-if"awesome">Vue is awesome!</h1>v-else 你也可以使用 v-else 为 v-if 添加一个“else 区块”。 <h1 v-if"awesome"&g…...
Power Query是啥
Power Query是一种用于数据获取、转换和整理的功能强大的工具,它是Microsoft Excel和Power BI中的一个组件。Power Query可以帮助用户从各种数据源中获取数据,并进行数据清洗、转换和整理,以便进一步分析和可视化。 使用Power Query…...
在k8s中部署nfs-client-provisioner
1、部署过程 1.1、环境依赖 在部署nfs-client-provisioner之前,需要先部署nfs服务。 因为,nfs-client-provisioner创建的pv都是要在nfs服务器中搭建的。 本示例中的nfs server的地址如下: [rootnode1 /]# showmount -e Export list for …...
23.12.10日总结
周总结 这周三的晚自习,学姐讲了一下git的合作开发,还有懒加载,防抖,节流 答辩的时候问了几个问题: 为什么在js中0.10.2!0.3? 在js中进行属性运算时,会出现0.10.20.300000000000000004js遵循IEEE754标…...
持续集成交付CICD:通过API方式上传Nexus制品
目录 一、实验 1.通过API方式上传Nexus制品 二、问题 1.如何通过API方式上传PNG图片 2.如何通过API方式上传tar.gz 与 ZIP文件 3.如何通过API方式上传Jar file文件 4.如何通过API方式上传制品(maven类型的制品)文件 5.如何下载制品 一、实验 1.通…...
Hadoop学习笔记(HDP)-Part.14 安装YARN+MR
目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …...
reinforce 跑 CartPole-v1
gym版本是0.26.1 CartPole-v1的详细信息,点链接里看就行了。 修改了下动手深度强化学习对应的代码。 然后这里 J ( θ ) J(\theta) J(θ)梯度上升更新的公式是用的不严谨的,这个和王树森书里讲的严谨公式有点区别。 代码 import gym import torch from …...
【VRTK】【VR开发】【Unity】13-攀爬
课程配套学习资源下载 https://download.csdn.net/download/weixin_41697242/88485426?spm=1001.2014.3001.5503 【概述】 VRTK提供两个预制件实现攀爬 Climbing Controller,用于控制Player的物理义体Climbable Interactable,用于设置可攀爬对象【设置Climbing Controller…...
华为OD机试真题-求幸存数之和-2023年OD统一考试(C卷)
题目描述: 给一个正整数列 nums,一个跳数 jump,及幸存数量 left。运算过程为:从索引为0的位置开始向后跳,中间跳过 J 个数字,命中索引为J1的数字,该数被敲出,并从该点起跳ÿ…...
python pyaudio实时读取音频数据并展示波形图
python pyaudio实时读取音频数据并展示波形图 下面代码可以驱动电脑接受声音数据,并实时展示音波图: import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation import pyaudio import wave import os import op…...
【算法系列篇】递归、搜索和回溯(二)
文章目录 前言1. 两两交换链表中的节点1.1 题目要求1.2 做题思路1.3 代码实现 2. Pow(X,N)2.1 题目要求2.2 做题思路2.3 代码实现 3. 计算布尔二叉树的值3.1 题目要求3.2 做题思路3.3 代码实现 4. 求根节点到叶结点数字之和4.1 题目要求4.2 做题思路4.3 代码实现 前言 前面为大…...
Ubuntu下安装SDL
源码下载地址(SDL version 2.0.14):https://www.libsdl.org/release/SDL2-2.0.14.tar.gz 将源码包拷贝到系统里 使用命令解压 tar -zxvf SDL2-2.0.14.tar.gz 解压得到文件夹 SDL2-2.0.14 进入文件夹 执行命令 ./configure 执行命令 make…...
创建vue项目:vue脚手架安装、vue-cli安装,vue ui界面创建vue工程(vue2/vue3),安装vue、搭建vue项目开发环境(保姆级教程二)
今天讲解 Windows 如何利用脚手架创建 vue 工程,以及 vue ui 图形化界面搭建 vue 开发环境,这是这个系列的第二章,有什么问题请留言,请点赞收藏!!! 文章目录 1、安装vue-cli脚手架2、vue ui创建…...
【3】密评-物理和环境安全测评
0x01 依据 GB/T 39786 -2021《信息安全技术 信息系统密码应用基本要求》针对等保三级系统要求: 物理和环境层面: a)宜采用密码技术进行物理访问身份鉴别,保证重要区域进入人员身份的真实性; b)宜采用密码技术保证电子门…...
笨爸爸工房,我们在校园|“小鲁班”,铸未来
为了响应国家号召,将劳动教育课程真正实现融入校园生活,笨爸爸工房已与洛阳市西下池小学、洛阳市第一实验小学西工校区、洛阳市西工区第二实验小学、洛阳第二外国语学校(兰溪校区)、洛阳市睿源幼儿园,这4所学校及1家幼…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
xmind转换为markdown
文章目录 解锁思维导图新姿势:将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件(ZIP处理)2.解析JSON数据结构3:递归转换树形结构4:Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...
java高级——高阶函数、如何定义一个函数式接口类似stream流的filter
java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用(Math::max) 2 函数接口…...
倒装芯片凸点成型工艺
UBM(Under Bump Metallization)与Bump(焊球)形成工艺流程。我们可以将整张流程图分为三大阶段来理解: 🔧 一、UBM(Under Bump Metallization)工艺流程(黄色区域ÿ…...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
