当前位置: 首页 > news >正文

【高数:3 无穷小与无穷大】

【高数:3 无穷小与无穷大】

  • 1 无穷小与无穷大
  • 2 极限运算法则
  • 3 极限存在原则
  • 4 趋于无穷小的比较

参考书籍:毕文斌, 毛悦悦. Python漫游数学王国[M]. 北京:清华大学出版社,2022.

1 无穷小与无穷大

无穷大在sympy中用两个字母o表示无穷大,正无穷大为sy.oo,负无穷大为-sy.oo

import sympy as sy
x=sy.oo
print(1/x)
>>>0

lim ⁡ x → 0 − 1 x \lim_{x \to 0^-} \frac{1}{x} limx0x1

x=sy.symbols('x')
print(sy.limit(1/x,x,0,dir='-'))
>>>-oo

2 极限运算法则

lim ⁡ x → 3 x − 3 x 2 − 9 \lim_{x \to 3} \frac{x-3}{x^2-9} limx3x29x3

import sympy as sy
x=sy.symbols('x')
print(sy.limit((x-3)/(x**2-9),x,3,dir='+-'))

lim ⁡ x → 1 2 x − 3 x 2 − 5 x + 4 \lim_{x \to 1} \frac{2x-3}{x^2-5x+4} limx1x25x+42x3

x=sy.symbols('x')
print(sy.limit((2*x-3)/(x**2-5*x+4),x,1,dir='-'))
print(sy.limit((2*x-3)/(x**2-5*x+4),x,1))
>>>-oo, oo 故趋于无穷时极限为无穷oo

lim ⁡ x → ∞ 3 x 3 + 4 X 2 + 2 7 x 3 + 5 x 2 − 3 \lim_{x \to \infty} \frac{3x^3+4X^2+2}{7x^3+5x^2-3} limx7x3+5x233x3+4X2+2

x=sy.symbols('x')
print(sy.limit((3*x**3+4*x**2+2)/(7*x**3+5*x**2-3),x,sy.oo,dir='-'))
print(sy.limit((3*x**3+4*x**2+2)/(7*x**3+5*x**2-3),x,-sy.oo,dir='+'))
>>>3/7,3/7 故趋于无穷时极限为3/7

当分子分母极限都不存在时, lim ⁡ x → ∞ sin ⁡ x x \lim_{x \to \infty} \frac{\sin x}{x} limxxsinx

x=sy.symbols('x')
y=sy.sin(x)/x
print(sy.limit(y,x,sy.oo,dir='+'))
print(sy.limit(y,x,-sy.oo,dir='+'))
>>>0 , 0 故趋于无穷时极限为0

3 极限存在原则

eg1: lim ⁡ x → 0 sin ⁡ x x \lim_{x \to 0} \frac{\sin x}{x} limx0xsinx

import sympy as sy
x=sy.symbols('x')
lim=sy.limit(sy.sin(x)/x,x,0,dir='+-')
print(lim)
>>>1

eg2: lim ⁡ x → 0 arcsin ⁡ x tan ⁡ x \lim_{x \to 0} \frac{\arcsin x}{\tan x} limx0tanxarcsinx

x=sy.symbols('x')
print(sy.limit(sy.asin(x)/sy.tan(x),x,0,dir='+-'))  #sy.asin()指arcsin函数
>>>1

eg3: lim ⁡ x → 0 1 − cos ⁡ x x 2 \lim_{x \to 0} \frac{1- \cos x}{x^2} limx0x21cosx

x=sy.symbols('x')
print(sy.limit((1-sy.cos(x))/(x**2),x,0,dir='+-'))
>>>1/2

eg4: lim ⁡ x → 0 ( 1 + x ) 1 x \lim_{x \to 0} (1+x)^{\frac{1}{x}} limx0(1+x)x1

x=sy.symbols('x')
lim=sy.limit((1+x)**(1/x),x,0,dir='+-')
print(lim)
>>>E

eg5: lim ⁡ x → ∞ ( 1 + 1 x ) x \lim_{x \to \infty} (1+\frac{1}{x})^x limx(1+x1)x

x=sy.symbols('x')
lim=sy.limit((1+1/x)**x,x,sy.oo,dir='-')
print(lim)
print(lim.round(3))
print(sy.limit((1+1/x)**x,x,-sy.oo))
>>>E, 2.718, E

eg6: 说明数列 2 , 2 + 2 , 2 + 2 + 2 \sqrt{2} , \sqrt{2+\sqrt{2}},\sqrt{2+\sqrt{2+\sqrt{2}}} 2 ,2+2 ,2+2+2 ,···的极限存在

#用函数的递归机制定义数列
def a_complex_series(n):#退出条件if n<=0:return 2**0.5#一个函数如果调用自身,则这个函数就是一个递归函数return (2.0+a_complex_series(n-1))**0.5
#绘制前20个数的散点图
import matplotlib.pyplot as plt
import numpy as np
x=[]
y=[]
for i in range(20):x.append(i)y.append(a_complex_series(i))
print(np.array(y))
plt.scatter(x,y)
plt.show()
>>>[1.41421356 1.84775907 1.96157056 1.99036945 1.99759091 1.99939764
1.9998494  1.99996235 1.99999059 1.99999765 1.99999941 1.999999851.99999996 1.99999999 2.         2.         2.         2.
2.         2.        ]

在这里插入图片描述
故极限为2

4 趋于无穷小的比较

eg1: lim ⁡ x → 0 tan ⁡ 2 x sin ⁡ 5 x \lim_{x \to 0} \frac{\tan 2x}{\sin 5x} limx0sin5xtan2x

from sympy import limit,sin,cos,tan,symbols #从sympy中仅导入这几个函数
x=symbols('x')
example_1=tan(2*x)/sin(5*x)
result=limit(example_1,x,0,dir='+-')
print(result)
>>>2/5

eg2: lim ⁡ x → 0 sin ⁡ x x 3 + 3 x \lim_{x \to 0} \frac{\sin x}{x^3+3x} limx0x3+3xsinx

x=symbols('x')
example_2=sin(x)/(x**3+3*x)
result=limit(example_2,x,0,dir='+-')
print(result)
>>>1/3

eg3: lim ⁡ x → 0 ( 1 + x 2 ) 1 / 3 − 1 cos ⁡ x − 1 \lim_{x \to 0} \frac{(1+x^2)^{1/3}-1}{\cos x-1} limx0cosx1(1+x2)1/31

x=symbols('x')
example_3=((1+x**2)**(1/3)-1)/(cos(x)-1)
result=limit(example_3,x,0,dir='+-')
print(result)
>>>-2/3

相关文章:

【高数:3 无穷小与无穷大】

【高数&#xff1a;3 无穷小与无穷大】 1 无穷小与无穷大2 极限运算法则3 极限存在原则4 趋于无穷小的比较 参考书籍&#xff1a;毕文斌, 毛悦悦. Python漫游数学王国[M]. 北京&#xff1a;清华大学出版社&#xff0c;2022. 1 无穷小与无穷大 无穷大在sympy中用两个字母o表示无…...

C语言预读取技术 __builtin_prefetch

__builtin_prefetch 是一个编译器内置函数&#xff0c;用于在编译时向编译器发出指令&#xff0c;要求在执行期间预取内存数据。它通常用于提高程序的性能&#xff0c;特别是对于那些需要频繁访问内存的情况。 __builtin_prefetch 函数的语法如下&#xff1a;c __builtin_prefe…...

自动驾驶学习笔记(十三)——感知基础

#Apollo开发者# 学习课程的传送门如下&#xff0c;当您也准备学习自动驾驶时&#xff0c;可以和我一同前往&#xff1a; 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo Beta宣讲和线下沙龙》免费报名—>传送门 文章目录 前言 传感器 测距原理 坐标系 标定 同…...

WLAN配置实验

本文记录了WLAN配置实践的过程&#xff0c;该操作在华为HCIA中属于相对较复杂的实验&#xff0c;记录过程备忘。这里不就WLAN原理解释&#xff0c;仅进行配置实践&#xff0c;可以作为学习原理时候的参考。本文使用华为ENSP进行仿真。实验拓扑图如下&#xff1a; 1.WLAN工作流程…...

java_web接收前端传的excel文件读取数据

#本次做一个将患者数据导入到某个模块的功能&#xff0c;前期集成的代码时不时出现异常&#xff0c;本次进行修改记录 //controller层/*** 导入患者数据*/RejectReplayRequestPostMapping("/importData")public Result<?> importData(HttpServletRequest req…...

在Vue开发中v-if指令和v-show指令的使用介绍和区别及使用场景

一、条件渲染 v-if v-if 指令用于条件性地渲染一块内容。这块内容只会在指令的表达式返回真值时才被渲染。 <h1 v-if"awesome">Vue is awesome!</h1>v-else 你也可以使用 v-else 为 v-if 添加一个“else 区块”。 <h1 v-if"awesome"&g…...

Power Query是啥

Power Query是一种用于数据获取、转换和整理的功能强大的工具&#xff0c;它是Microsoft Excel和Power BI中的一个组件。Power Query可以帮助用户从各种数据源中获取数据&#xff0c;并进行数据清洗、转换和整理&#xff0c;以便进一步分析和可视化。 使用Power Query&#xf…...

在k8s中部署nfs-client-provisioner

1、部署过程 1.1、环境依赖 在部署nfs-client-provisioner之前&#xff0c;需要先部署nfs服务。 因为&#xff0c;nfs-client-provisioner创建的pv都是要在nfs服务器中搭建的。 本示例中的nfs server的地址如下&#xff1a; [rootnode1 /]# showmount -e Export list for …...

23.12.10日总结

周总结 这周三的晚自习&#xff0c;学姐讲了一下git的合作开发&#xff0c;还有懒加载&#xff0c;防抖&#xff0c;节流 答辩的时候问了几个问题&#xff1a; 为什么在js中0.10.2!0.3? 在js中进行属性运算时&#xff0c;会出现0.10.20.300000000000000004js遵循IEEE754标…...

持续集成交付CICD:通过API方式上传Nexus制品

目录 一、实验 1.通过API方式上传Nexus制品 二、问题 1.如何通过API方式上传PNG图片 2.如何通过API方式上传tar.gz 与 ZIP文件 3.如何通过API方式上传Jar file文件 4.如何通过API方式上传制品&#xff08;maven类型的制品&#xff09;文件 5.如何下载制品 一、实验 1.通…...

Hadoop学习笔记(HDP)-Part.14 安装YARN+MR

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …...

reinforce 跑 CartPole-v1

gym版本是0.26.1 CartPole-v1的详细信息&#xff0c;点链接里看就行了。 修改了下动手深度强化学习对应的代码。 然后这里 J ( θ ) J(\theta) J(θ)梯度上升更新的公式是用的不严谨的&#xff0c;这个和王树森书里讲的严谨公式有点区别。 代码 import gym import torch from …...

【VRTK】【VR开发】【Unity】13-攀爬

课程配套学习资源下载 https://download.csdn.net/download/weixin_41697242/88485426?spm=1001.2014.3001.5503 【概述】 VRTK提供两个预制件实现攀爬 Climbing Controller,用于控制Player的物理义体Climbable Interactable,用于设置可攀爬对象【设置Climbing Controller…...

华为OD机试真题-求幸存数之和-2023年OD统一考试(C卷)

题目描述&#xff1a; 给一个正整数列 nums&#xff0c;一个跳数 jump&#xff0c;及幸存数量 left。运算过程为&#xff1a;从索引为0的位置开始向后跳&#xff0c;中间跳过 J 个数字&#xff0c;命中索引为J1的数字&#xff0c;该数被敲出&#xff0c;并从该点起跳&#xff…...

python pyaudio实时读取音频数据并展示波形图

python pyaudio实时读取音频数据并展示波形图 下面代码可以驱动电脑接受声音数据&#xff0c;并实时展示音波图&#xff1a; import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation import pyaudio import wave import os import op…...

【算法系列篇】递归、搜索和回溯(二)

文章目录 前言1. 两两交换链表中的节点1.1 题目要求1.2 做题思路1.3 代码实现 2. Pow(X,N)2.1 题目要求2.2 做题思路2.3 代码实现 3. 计算布尔二叉树的值3.1 题目要求3.2 做题思路3.3 代码实现 4. 求根节点到叶结点数字之和4.1 题目要求4.2 做题思路4.3 代码实现 前言 前面为大…...

Ubuntu下安装SDL

源码下载地址&#xff08;SDL version 2.0.14&#xff09;&#xff1a;https://www.libsdl.org/release/SDL2-2.0.14.tar.gz 将源码包拷贝到系统里 使用命令解压 tar -zxvf SDL2-2.0.14.tar.gz 解压得到文件夹 SDL2-2.0.14 进入文件夹 执行命令 ./configure 执行命令 make…...

创建vue项目:vue脚手架安装、vue-cli安装,vue ui界面创建vue工程(vue2/vue3),安装vue、搭建vue项目开发环境(保姆级教程二)

今天讲解 Windows 如何利用脚手架创建 vue 工程&#xff0c;以及 vue ui 图形化界面搭建 vue 开发环境&#xff0c;这是这个系列的第二章&#xff0c;有什么问题请留言&#xff0c;请点赞收藏&#xff01;&#xff01;&#xff01; 文章目录 1、安装vue-cli脚手架2、vue ui创建…...

【3】密评-物理和环境安全测评

0x01 依据 GB/T 39786 -2021《信息安全技术 信息系统密码应用基本要求》针对等保三级系统要求&#xff1a; 物理和环境层面&#xff1a; a&#xff09;宜采用密码技术进行物理访问身份鉴别,保证重要区域进入人员身份的真实性&#xff1b; b&#xff09;宜采用密码技术保证电子门…...

笨爸爸工房,我们在校园|“小鲁班”,铸未来

为了响应国家号召&#xff0c;将劳动教育课程真正实现融入校园生活&#xff0c;笨爸爸工房已与洛阳市西下池小学、洛阳市第一实验小学西工校区、洛阳市西工区第二实验小学、洛阳第二外国语学校&#xff08;兰溪校区&#xff09;、洛阳市睿源幼儿园&#xff0c;这4所学校及1家幼…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

DBLP数据库是什么?

DBLP&#xff08;Digital Bibliography & Library Project&#xff09;Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高&#xff0c;数据库文献更新速度很快&#xff0c;很好地反映了国际计算机科学学术研…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...