当前位置: 首页 > news >正文

[足式机器人]Part2 Dr. CAN学习笔记-数学基础Ch0-5Laplace Transform of Convolution卷积的拉普拉斯变换

本文仅供学习使用
本文参考:
B站:DR_CAN

Dr. CAN学习笔记-数学基础Ch0-5Laplace Transform of Convolution卷积的拉普拉斯变换


Laplace Transform : X ( s ) = L [ x ( t ) ] = ∫ 0 ∞ x ( t ) e − s t d t X\left( s \right) =\mathcal{L} \left[ x\left( t \right) \right] =\int_0^{\infty}{x\left( t \right) e^{-st}}\mathrm{d}t X(s)=L[x(t)]=0x(t)estdt

Convolution : x ( t ) ∗ g ( t ) = ∫ 0 t x ( τ ) g ( t − τ ) d τ x\left( t \right) *g\left( t \right) =\int_0^t{x\left( \tau \right) g\left( t-\tau \right)}\mathrm{d}\tau x(t)g(t)=0tx(τ)g(tτ)dτ

证明: L [ x ( t ) ∗ g ( t ) ] = X ( s ) G ( s ) \mathcal{L} \left[ x\left( t \right) *g\left( t \right) \right] =X\left( s \right) G\left( s \right) L[x(t)g(t)]=X(s)G(s)
L [ x ( t ) ∗ g ( t ) ] = ∫ 0 ∞ ∫ 0 t x ( τ ) g ( t − τ ) d τ e − s t d t = ∫ 0 ∞ ∫ τ ∞ x ( τ ) g ( t − τ ) e − s t d t d τ \mathcal{L} \left[ x\left( t \right) *g\left( t \right) \right] =\int_0^{\infty}{\int_0^t{x\left( \tau \right) g\left( t-\tau \right) \mathrm{d}\tau}e^{-st}}\mathrm{d}t=\int_0^{\infty}{\int_{\tau}^{\infty}{x\left( \tau \right) g\left( t-\tau \right)}e^{-st}}\mathrm{d}t\mathrm{d}\tau L[x(t)g(t)]=00tx(τ)g(tτ)dτestdt=0τx(τ)g(tτ)estdtdτ
在这里插入图片描述>令: u = t − τ , t = u + τ , d t = d u + d τ , t ∈ [ τ , + ∞ ) ⇒ u ∈ [ 0 , + ∞ ) u=t-\tau ,t=u+\tau ,\mathrm{d}t=\mathrm{d}u+\mathrm{d}\tau ,t\in \left[ \tau ,+\infty \right) \Rightarrow u\in \left[ 0,+\infty \right) u=tτ,t=u+τ,dt=du+dτ,t[τ,+)u[0,+)
L [ x ( t ) ∗ g ( t ) ] = ∫ 0 ∞ ∫ 0 ∞ x ( τ ) g ( u ) e − s ( u + τ ) d u d τ = ∫ 0 ∞ x ( τ ) e − s τ d τ ∫ 0 ∞ g ( u ) e − s u d u = X ( s ) G ( s ) \mathcal{L} \left[ x\left( t \right) *g\left( t \right) \right] =\int_0^{\infty}{\int_0^{\infty}{x\left( \tau \right) g\left( u \right)}e^{-s\left( u+\tau \right)}}\mathrm{d}u\mathrm{d}\tau =\int_0^{\infty}{x\left( \tau \right)}e^{-s\tau}\mathrm{d}\tau \int_0^{\infty}{g\left( u \right)}e^{-su}\mathrm{d}u=X\left( s \right) G\left( s \right) L[x(t)g(t)]=00x(τ)g(u)es(u+τ)dudτ=0x(τ)esτdτ0g(u)esudu=X(s)G(s)

L [ x ( t ) ∗ g ( t ) ] = L [ x ( t ) ] L [ g ( t ) ] = X ( s ) G ( s ) \mathcal{L} \left[ x\left( t \right) *g\left( t \right) \right] =\mathcal{L} \left[ x\left( t \right) \right] \mathcal{L} \left[ g\left( t \right) \right] =X\left( s \right) G\left( s \right) L[x(t)g(t)]=L[x(t)]L[g(t)]=X(s)G(s)

相关文章:

[足式机器人]Part2 Dr. CAN学习笔记-数学基础Ch0-5Laplace Transform of Convolution卷积的拉普拉斯变换

本文仅供学习使用 本文参考: B站:DR_CAN Dr. CAN学习笔记-数学基础Ch0-5Laplace Transform of Convolution卷积的拉普拉斯变换 Laplace Transform : X ( s ) L [ x ( t ) ] ∫ 0 ∞ x ( t ) e − s t d t X\left( s \right) \mathcal{L} \left[ x\lef…...

生产问题: 利用线程Thread预加载数据缓存,其它类全局变量获取缓存偶发加载不到

生产问题: 利用线程Thread预加载数据缓存偶发加载不到 先上代码 public class ThreadTest {//本地缓存Map<String, Object> map new HashMap<String, Object>();class ThreadA implements Runnable{Overridepublic void run() {System.out.println("Thread…...

Elasticsearch mapping 之 性能相关配置

ES 常见类型 通用类型: 二进制: binary 布尔型: boolean 字符串: keyword, constant_keyword, wildcard, text 别名: alias 对象: object, flattened, nested, join 结构化数据类型: Range, ip, version, murmur3 空间数据类型: geo_point, geo_shape, point, shape 性…...

adb push报错:remote couldn‘t create file: Is a directory

adb push报错&#xff1a;remote couldn‘t create file: Is a directory 出现这个问题可能是电脑本地目录中包含中文或者是目录地址中多包含了一个/ 比如说以下两种路径 1. test/测试音频文件1/a.mp3 2.test/test_audio/ 这两种都是不可以的&#xff08;我是在as中执行的…...

GitLab 服务更换了机器,IP 地址或域名没有变化时,可能会出现无法拉取或提交代码的情况。

当 GitLab 服务更换了机器&#xff0c;但 IP 地址或域名没有变化时&#xff0c;可能会出现无法拉取或提交代码的情况。 这可能是由于 SSH 密钥或 SSL 证书发生了变化。以下是一些可能的解决步骤&#xff1a; 这可能是由于 SSH 密钥或 SSL 证书发生了变化。以下是一些可能的解决…...

【华为OD题库-076】执行时长/GPU算力-Java

题目 为了充分发挥GPU算力&#xff0c;需要尽可能多的将任务交给GPU执行&#xff0c;现在有一个任务数组&#xff0c;数组元素表示在这1秒内新增的任务个数且每秒都有新增任务。 假设GPU最多一次执行n个任务&#xff0c;一次执行耗时1秒&#xff0c;在保证GPU不空闲情况下&…...

持续集成交付CICD:Jenkins使用GitLab共享库实现前后端项目Sonarqube

目录 一、实验 1.Jenkins使用GitLab共享库实现后端项目Sonarqube 2.优化GitLab共享库 3.Jenkins使用GitLab共享库实现前端项目Sonarqube 4.Jenkins通过插件方式进行优化 二、问题 1.sonar-scanner 未找到命令 2.npm 未找到命令 一、实验 1.Jenkins使用GitLab共享库实现…...

Linux文件结构与文件权限

基于centos了解Linux文件结构 了解一下文件类型 Linux采用的一切皆文件的思想&#xff0c;将硬件设备、软件等所有数据信息都以文件的形式呈现在用户面前&#xff0c;这就使得我们对计算机的管理更加方便。所以本篇文章会对Linux操作系统的文件结构和文件权限进行讲解。 首先…...

CentOS上安装和配置Apache HTTP服务器

在CentOS系统上安装和配置Apache HTTP服务器可以为您的网站提供可靠的托管环境。Apache是开源的Web服务器软件&#xff0c;具有广泛的支持和强大的功能。下面是在CentOS上安装和配置Apache HTTP服务器的步骤&#xff1a; 步骤一&#xff1a;安装Apache HTTP服务器 打开终端&am…...

前端知识(十二)———ES6迭代器

ES6中的迭代器是一种新的对象&#xff0c;它具有一个next()方法。next()方法返回一个对象&#xff0c;这个对象包含两个属性&#xff1a;value和done。value属性是迭代器中的下一个值&#xff0c;done属性是一个布尔值&#xff0c;表示迭代器是否已经遍历完所有的值。迭代器是一…...

云端仓库平台

SpringBoot MySQL Vue 等技术实现的云端仓库 技术栈 核心框架&#xff1a;SpringBoot 持久层框架&#xff1a;MyBatis-Plus 前端框架&#xff1a;Vue 数据库&#xff1a;MySQL 项目包含源码和数据库文件。 效果图如下&#xff1a;...

php第三方skd自动加载

把mugou-sdk复制到项目下在composer.josn找到classmap加入sdk "autoload": {"classmap": ["mugou-sdk"] },在composer.josn找到files加入sdk "autoload": {"files":[mugou-sdk] },项目目录下运行 composer dump-autoload…...

Golang channle(管道)基本介绍、快速入门

channel(管道)-基本介绍 为什么需要channel&#xff1f;前面使用全局变量加锁同步来解决goroutine的通讯&#xff0c;但不完美 1)主线程在等待所有goroutine全部完成的时间很难确定&#xff0c;我们这里设置10秒&#xff0c;仅仅是估算。 2)如果主线程休眠时间长了&#xff0c…...

盘点六款颇具潜力的伪原创AI工具

写作作为信息传递的主要媒介&#xff0c;在庞大的信息海洋中&#xff0c;为了在激烈的竞争中脱颖而出&#xff0c;伪原创AI工具成为越来越多写手的神秘利器。在本文中&#xff0c;我们将深入盘点六款颇具潜力的伪原创AI工具&#xff0c;为你揭开它们神秘的面纱。 1. 文心一言 …...

基于SSM的健身房预约系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…...

postgresql自带指令命令系列二

简介 在安装postgresql数据库的时候会需要设置一个关于postgresql数据库的PATH变量 export PATH/home/postgres/pg/bin:$PATH&#xff0c;该变量会指向postgresql安装路径下的bin目录。这个安装目录和我们在进行编译的时候./configure --prefix [指定安装目录] 中的prefix参…...

ABAP - Function ALV 02 简单开发一个Function ALV

了解Function ALV&#xff1a; https://blog.csdn.net/HeathlX/article/details/134879766?spm1001.2014.3001.5501程序开发步骤&#xff1a;① TCODE:SE38创建程序 ② 编写程序 DATA gt_spfli TYPE TABLE OF spfli.** Layout 变量定义 (固定使用 直接粘贴复制即可) DATA gs…...

IDEA启动失败报错解决思路

IDEA启动失败报错解决思路 背景&#xff1a;在IDEA里安装插件失败&#xff0c;重启后直接进不去了&#xff0c;然后分析问题解决问题的过程记录下来。方便下次遇到快速解决。也是一种解决问题的思路&#xff0c;分享出去。 启动报错信息 Internal error. Please refer to https…...

密码学学习笔记(二十三):哈希函数的安全性质:抗碰撞性,抗第一原象性和抗第二原象性

在密码学中&#xff0c;哈希函数是一种将任意长度的数据映射到固定长度输出的函数&#xff0c;这个输出通常称为哈希值。理想的哈希函数需要具备几个重要的安全性质&#xff0c;以确保数据的完整性和验证数据的来源。这些性质包括抗碰撞性、抗第一原象性和抗第二原象性。 抗碰…...

STM32-GPIO编程

一、GPIO 1.1 基本概念 GPIO&#xff08;General-purpose input/output&#xff09;通用输入输出接口 --GP 通用 --I input输入 --o output输出 通用输入输出接口GPIO是嵌入式系统、单片机开发过程中最常用的接口&#xff0c;用户可以通过编程灵活的对接口进行控制&#xff0c;…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...