随机梯度下降的代码实现
在单变量线性回归的机器学习代码中,我们讨论了批量梯度下降代码的实现,本篇将进行随机梯度下降的代码实现,整体和批量梯度下降代码类似,仅梯度下降部分不同:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import joblib# 导入数据
path = 'ex1data1.txt'
data = pd.read_csv(path, header=None, names=['Population', 'Profit'])# 分离特征和目标变量
X = data.iloc[:, 0:1].values # Population列
y = data.iloc[:, 1].values # Profit列
m = len(y) # 样本数量# 添加一列全为1的截距项
X = np.append(np.ones((m, 1)), X, axis=1)# 批量梯度下降参数
alpha = 0.01 # 学习率
iterations = 1500 # 迭代次数# 随机梯度下降算法
def stochasticGradientDescent(X, y, theta, alpha, num_iters):m = len(y)for iter in range(num_iters):for i in range(m):# 随机选择一个数据点进行梯度计算random_index = np.random.randint(0, m)X_i = X[random_index, :].reshape(1, X.shape[1])y_i = y[random_index].reshape(1, 1)# 计算预测值和误差prediction = np.dot(X_i, theta)error = prediction - y_i# 更新参数theta = theta - (alpha * X_i.T.dot(error)).flatten()return theta# 初始化模型参数
theta = np.zeros(2)"""
随机梯度下降前的损失显示
"""
# 定义损失函数,用于显示调用前后的损失值对比
def computeCost(X, y, theta):m = len(y)predictions = X.dot(theta)square_err = (predictions - y) ** 2return np.sum(square_err) / (2 * m)
# 计算初始损失
initial_cost = computeCost(X, y, theta)
print("初始的损失值:", initial_cost)# 使用随机梯度下降进行模型拟合
theta = stochasticGradientDescent(X, y, theta, alpha, iterations)"""
随机梯度下降后的损失显示
"""
# 计算优化后的损失
final_cost = computeCost(X, y, theta)
print("优化后的损失值:", final_cost)"""
使用需要预测的数据X进行预测
"""
# 假设的人口数据
population_values = [3.5, 7.0] # 代表35,000和70,000人口# 对每个人口值进行预测
for pop in population_values:# 将人口值转换为与训练数据相同的格式(包括截距项)predict_data = np.matrix([1, pop]) # 添加截距项# 使用模型进行预测predict_profit = np.dot(predict_data, theta.T)print(f"模型预测结果 {pop} : {predict_profit[0,0]}")
"""
使用模型绘制函数
"""
# 创建预测函数
x_values = np.array(X[:, 1])
f = theta[0] * np.ones_like(x_values) + (theta[1] * x_values) # 使用广播机制# 绘制图表
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(x_values, f, 'r', label='Prediction')
ax.scatter(data.Population, data.Profit, label='Training Data')
ax.legend(loc=2)
ax.set_xlabel('Population')
ax.set_ylabel('Profit')
ax.set_title('Predicted Profit vs. Population Size')
plt.show()"""
保存模型
"""
# 保存模型
joblib.dump(theta, 'linear_regression_model.pkl')"""
加载模型并执行预测
"""
# 加载模型
loaded_model = joblib.load('linear_regression_model.pkl')# 假设的人口数据
population_values = [3.5, 7.0] # 代表35,000和70,000人口# 使用模型进行预测
for pop in population_values:# 更新预测数据矩阵,包括当前的人口值predict_data = np.matrix([1, pop])# 进行预测predict_value = np.dot(predict_data, loaded_model.T)print(f"模型预测结果 {pop} : {predict_value[0,0]}")
实际测试下来,同迭代次数情况下随机梯度下降的收敛度远低于批量梯度下降:
初始的损失值: 32.072733877455676
优化后的损失值: 6.037742815925882 批量梯度下降为:4.47802760987997
模型预测结果 3.5 : -0.6151395665038226
模型预测结果 7.0 : 2.9916563373877203
模型预测结果 3.5 : -0.6151395665038226
模型预测结果 7.0 : 2.9916563373877203
即便是将迭代次数增加10倍也无法有效降低太多损失,15000次迭代的结果:
优化后的损失值: 5.620745223253086
个人总结:随机梯度下降估计只有针对超大规模的数据有应用意义。
注:本文为学习吴恩达版本机器学习教程的代码整理,使用的数据集为https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes/blob/f2757f85b99a2b800f4c2e3e9ea967d9e17dfbd8/code/ex1-linear%20regression/ex1data1.txt
相关文章:
随机梯度下降的代码实现
在单变量线性回归的机器学习代码中,我们讨论了批量梯度下降代码的实现,本篇将进行随机梯度下降的代码实现,整体和批量梯度下降代码类似,仅梯度下降部分不同: import numpy as np import pandas as pd import matplotl…...
渐进推导中常用的一些结论
标题很帅 STAR-RIS Enhanced Joint Physical Layer Security and Covert Communications for Multi-antenna mmWave Systems文章末尾的一个推导。 lim M → ∞ ∥ Φ ( w k ⊗ Θ r ) Ω r w H g ∗ ∥ 2 2 M lim M → ∞ Tr ( g T Ω r w ( w k ⊗ Θ r ) H Φ H Φ…...
网络安全等级保护V2.0测评指标
网络安全等级保护(等保V2.0)测评指标: 1、物理和环境安全 2、网络和通信安全 3、设备和计算安全 4、应用和数据安全 5、安全策略和管理制度 6、安全管理机构和人员 7、安全建设管理 8、安全运维管理 软件全文档获取:点我获取 1、物…...
java中list的addAll用法详细实例?
List 的 addAll() 方法用于将一个集合中的所有元素添加到另一个 List 中。下面是一个详细的实例,展示了 addAll() 方法的使用: java Copy code import java.util.ArrayList; import java.util.List; public class AddAllExample { public static v…...
关于学习计算机的心得与体会
也是隔了一周没有发文了,最近一直在准备期末考试,后来想了很久,学了这么久的计算机,这当中有些收获和失去想和各位正在和我一样在学习计算机的路上的老铁分享一下,希望可以作为你们碰到困难时的良药。先叠个甲…...
LLM之RAG理论(一)| CoN:腾讯提出笔记链(CHAIN-OF-NOTE)来提高检索增强模型(RAG)的透明度
论文地址:https://arxiv.org/pdf/2311.09210.pdf 检索增强语言模型(RALM)已成为自然语言处理中一种强大的新范式。通过将大型预训练语言模型与外部知识检索相结合,RALM可以减少事实错误和幻觉,同时注入最新知识。然而&…...
Android studio:打开应用程序闪退的问题2.0
目录 找到问题分析问题解决办法 找到问题 老生常谈,可能这东西真的很常见吧,在之前那篇文章中 linkhttp://t.csdnimg.cn/UJQNb 已经谈到了关于打开Androidstuidio开发的软件后明明没有报错却无法运行(具体表现为应用程序闪退的问题ÿ…...
Spring IoC如何存取Bean对象
小王学习录 IoC(Inversion of Control)1. 什么是IoC2. 什么是Spring IoC3. 什么是DI4. Spring IoC的作用 存储Bean对象1. 创建Bean2. 将Bean注册到Spring中. 取Bean对象.1. 获取Spring上下文信息使用ApplicationContext和BeanFactory的区别 2. 获取指定Bean对象 IoC(Inversion …...
【开源】基于Vue.js的实验室耗材管理系统
文末获取源码,项目编号: S 081 。 \color{red}{文末获取源码,项目编号:S081。} 文末获取源码,项目编号:S081。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 耗材档案模块2.2 耗材入库模块2.3 耗…...
Datawhale聪明办法学Python(task2Getting Started)
一、课程基本结构 课程开源地址:课程简介 - 聪明办法学 Python 第二版 章节结构: Chapter 0 安装 InstallationChapter 1 启航 Getting StartedChapter 2 数据类型和操作 Data Types and OperatorsChapter 3 变量与函数 Variables and FunctionsChapte…...
量化交易怎么操作?量化软件怎么选择比较好?(散户福利,建议收藏)
一:量化的具体操作步骤是什么呢?1. 数据获取:索取和收集金融市场数据。 2. 策略制定:制定数量交易策略,这包括制定投资目标、建立交易规则和风险控制机制等,这个过程需要不断优化和更新。 3. 编写算法&am…...
什么是 AWS IAM?如何使用 IAM 数据库身份验证连接到 Amazon RDS(上)
驾驭云服务的安全环境可能很复杂,但 AWS IAM 为安全访问管理提供了强大的框架。在本文中,我们将探讨什么是 AWS Identity and Access Management (IAM) 以及它如何增强安全性。我们还将提供有关使用 IAM 连接到 Amazon Relational Database Service (RDS…...
Python从入门到精通七:Python函数进阶
函数多返回值 学习目标: 知道函数如何返回多个返回值 问: 如果一个函数如些两个return (如下所示),程序如何执行? 答:只执行了第一个return,原因是因为return可以退出当前函数,导致return下方的代码不执…...
uniapp踩坑之项目:使用过滤器将时间格式化为特定格式
利用filters过滤器对数据直接进行格式化,注意:与method、onLoad、data同层级 <template><div><!-- orderInfo.time的数据为:2023-12-12 12:10:23 --><p>{{ orderInfo.time | formatDate }}</p> <!-- 2023-1…...
webpack学习-2.管理资源
webpack学习-2.管理资源 1.这章要干嘛2.加载css注意顺序! 3.总结 1.这章要干嘛 管理资源,什么意思呢?管理什么资源?项目中经常会 导入各种各样的css文件,图片文件,字体文件,数据文件等等&#…...
658. 找到 K 个最接近的元素
658. 找到 K 个最接近的元素 Java代码:滑窗 class Solution {public List<Integer> findClosestElements(int[] arr, int k, int x) {List<Integer> list new ArrayList<>();for (int i 0; i < arr.length; i) {arr[i] arr[i] - x;}for(i…...
十二、MapReduce概述
1、MapReduce (1)采用框架 MapReduce是“分散——>汇总”模式的分布式计算框架,可供开发人员进行相应计算 (2)编程接口: ~Map ~Reduce 其中,Map功能接口提供了“分散”的功能ÿ…...
shell条件测试
目录 1.1.用途 1.2.基本语法 1.2.1.格式: 1.2.2.例 1.3 文件测试 1.4.整数测试 1.4.1.作用 1.4.2.操作符 1.4.3.示例: 1.5.逻辑操作符 1.5.1.符号 1.5.2.例: 1.6.命令分隔符 1.1.用途 为了能够正确处理Shell程序运行过程中遇到的各种情况&am…...
python在线读取传奇列表,并解析为需要的JSON格式
python在线读取传奇列表,并解析为需要的JSON格式,以下为传奇中使用的TXT列表格式, [Server] ; 使用“/”字符分开颜色,也可以不使用颜色,支持以前的旧格式,只有标题和服务器标题支持颜色 ; 标题/颜色代码(0-255)|服务器标题/颜色代码(0-255)|服务器名称|服务器IP|服务器端…...
【docker 】 安装docker(centOS7)
官网 docker官网 github源码 官网 在CentOS上安装Docker引擎 官网 在Debian上安装Docker引擎 官网 在 Fedora上安装Docker引擎 官网 在ubuntu上安装Docker引擎 官网 在RHEL (s390x)上安装Docker引擎 官网 在SLES上安装Docker引擎 最完善的资料都在官网。 卸载旧版本 …...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
