当前位置: 首页 > news >正文

[LLM]nanoGPT---训练一个写唐诗的GPT

karpathy/nanoGPT: The simplest, fastest repository for training/finetuning medium-sized GPTs. (github.com)

原有模型使用的莎士比亚的戏剧数据集, 如果需要一个写唐诗机器人,需要使用唐诗的文本数据,

一个不错的唐诗,宋词数据的下载资源地址:

https://github.com/chinese-poet

这个数据集里面包含搜集到的唐诗,宋词,元曲小说文本数据。

一 数据准备

1. 先下载全唐诗数据,保存到 data/poemtext/tang-poetry下

2. 进行数据的预处理

format-data.py

# -*- coding: utf-8 -*-
import glob
import json
datas_json=glob.glob("./tang-poetry/poet*.json") #1匹配所有唐诗json文件for data_json in datas_json[:]: #2处理匹配的每一个文件with open(data_json,"r",encoding="utf-8") as f:ts_data =json.load(f)for each_ts in ts_data[:]: #3处理文件中每段数据,只要五言诗和2句的paragraphs_list =each_ts["paragraphs"]if len(paragraphs_list) == 2 and len(paragraphs_list[0])==12 and len(paragraphs_list[1]) == 12:with open("tang_poet.txt","a",encoding="utf-8") as f2:f2.write("".join(paragraphs_list))f2.write("\n")f =open("tang_poet.txt","r",encoding="utf-8")
print(len(f.readlines()))

prepare.py

import os
import requests
import tiktoken
import numpy as np# download the tiny shakespeare dataset
input_file_path = os.path.join(os.path.dirname(__file__), 'tang_poet.txt')
with open(input_file_path, 'r') as f:data = f.read()
n = len(data)
train_data = data[:int(n*0.9)]
val_data = data[int(n*0.9):]# encode with tiktoken gpt2 bpe
enc = tiktoken.get_encoding("gpt2")
train_ids = enc.encode_ordinary(train_data)
val_ids = enc.encode_ordinary(val_data)
print(f"train has {len(train_ids):,} tokens")
print(f"val has {len(val_ids):,} tokens")# export to bin files
train_ids = np.array(train_ids, dtype=np.uint16)
val_ids = np.array(val_ids, dtype=np.uint16)
train_ids.tofile(os.path.join(os.path.dirname(__file__), 'train.bin'))
val_ids.tofile(os.path.join(os.path.dirname(__file__), 'val.bin'))

二 配置文件准备

参考   train_shakespeare_char.py

三 开始训练

参考   train_shakespeare_char.py

# mac pro m1机器上
python3 train.py config/train_poemtext_char.py --device=mps --compile=False --eval_iters=20 --log_interval=1 --block_size=64 --batch_size=12 --n_layer=4 --n_head=4 --n_embd=128 --max_iters=1000 --lr_decay_iters=1000 --dropout=0.0

四 生成唐诗

python3 sample.py --out_dir=out-poemtext-char --device=mps

参考:

迷你版ChatGPT开源,教你怎么用nanoGPT训练一个写小说的AI机器人! - 知乎 (zhihu.com)

Gpt进阶(二): 以古诗集为例,训练一个自己的古诗词gpt模型 - 知乎 (zhihu.com)

相关文章:

[LLM]nanoGPT---训练一个写唐诗的GPT

karpathy/nanoGPT: The simplest, fastest repository for training/finetuning medium-sized GPTs. (github.com) 原有模型使用的莎士比亚的戏剧数据集, 如果需要一个写唐诗机器人,需要使用唐诗的文本数据, 一个不错的唐诗,宋词数据的下载…...

docker compose部署wordpress

准备机器: 192.168.58.151 (关闭防火墙和selinux) 安装好docker服务 (详细参照:http://t.csdnimg.cn/usG0s 中的国内源安装docker) 部署wordpress: 创建目录: [rootdocker ~]# mkdir…...

【docker四】使用Docker-compose一键部署Wordpress平台

目录 一、YAML 文件格式及编写注意事项(重要) 1、yaml文件使用时注意事项: 2、yaml文件的基本数据结构: 2.1、声明变量(标量。是单个的不可再分的值,类型:字符串,整数&#xff0c…...

HTML程序大全(1):简易计算器

HTML代码&#xff0c;主要创建了几个按钮。 <div class"container"><div class"output" id"output">0</div><button class"button" onclick"clearOutput()" id"clear">C</button>…...

esp32服务器与android客户端的tcp通讯

esp32 //esp32作为服务端 #include <WiFi.h>#define LED_BUILTIN 2 // 创建热点 const char *ssid "ESP32"; const char *password "12345678"; const int port 1122; //端口 WiFiServer server(port); void setup() {delay(5000);pinMode(LED_…...

自定义Mybatis LanguageDriver性能优化

场景&#xff1a;高并发情况下mybatis 动态sql 解析 锁问题优化 优化前 并发测试 XMLLanguageDriver 类 的 createSqlSource 方法有锁 而且 每次执行时都会走该方法 优化前 &#xff1a; 线程有Block 优化后的 LanguageDriver public class CustomXMLLanguageDriver im…...

DevEco Studio 鸿蒙(HarmonyOS)项目结构

DevEco Studio 鸿蒙&#xff08;HarmonyOS&#xff09;项目结构 一、操作环境 操作系统: Windows 10 专业版 IDE:DevEco Studio 3.1 SDK:HarmonyOS 3.1 二、项目结构 创建简单的Hello World移动应用项目结构如下图 由上到下说明各个文件夹的作用 .hvigor&#xff1a;存…...

Springboot整合篇Druid

一、概述 1.1简介 Druid 是阿里巴巴开源平台上一个数据库连接池实现&#xff0c;结合了 C3P0、DBCP 等 DB 池的优点&#xff0c;同时加入了日志监控。 它本身还自带一个监控平台&#xff0c;可以查看时时产生的sql、uri等监控数据&#xff0c;可以排查慢sql、慢请求&#xff0…...

uniapp 微信小程序 封装axios 包含请求拦截、响应拦截、无感刷新令牌功能

前言&#xff1a; 1、为什么不适用uniapp自带的请求功能&#xff1f; 答&#xff1a;uniapp自带的请求功能&#xff0c;再刷新了令牌后&#xff0c;重新请求返回的数据无法返回给发起请求的方法。也就是说&#xff0c;刷新令牌后重新发起的请求和第一次发起请求的方法是割裂的。…...

C语言精选——选择题Day41

第一题 1. 有以下程序段&#xff1a; char *p, *q; p (char *)malloc(sizeof(char) * 20); q p; scanf("%s %s", p, q); printf("%s %s\n", p, q); 若从键盘输入&#xff1a;abc def↙&#xff0c;则输出结果是&#xff08; &#xff09; A&#xff1a;d…...

Tomcat头上有个叉叉

问题原因&#xff1a; 这是因为它就是个空的tomcat,并没有导入项目运行 解决方案&#xff1a; war模式&#xff1a;发布模式&#xff0c;正式发布时用&#xff0c;将WEB工程以war包的形式上传到服务器 war exploded模式&#xff1a;开发时用&#xff0c;将WEB工程的文件夹直接…...

Linux shell编程学习笔记35:seq

0 前言 在使用 for 循环语句时&#xff0c;我们经常使用到序列。比如&#xff1a; for i in 1 2 3 4 5 6 7 8 9 10; do echo "$i * 2 $(expr $i \* 2)"; done 其中的 1 2 3 4 5 6 7 8 9 10;就是一个整数序列 。 为了方便我们使用数字序列&#xff0c;Linux提供了…...

Nougat:结合光学神经网络,引领学术PDF文档的智能解析、挖掘学术论文PDF的价值

Nougat&#xff1a;结合光学神经网络&#xff0c;引领学术PDF文档的智能解析、挖掘学术论文PDF的价值 这是Nougat的官方存储库&#xff0c;Nougat是一种学术文档PDF解析器&#xff0c;可以理解LaTeX数学和表格。 Project page: https://facebookresearch.github.io/nougat/ …...

涉密网络的IP查询防护策略

涉密网络的安全性对于维护国家、企业及个人的核心利益至关重要。在当今数字化时代&#xff0c;网络攻击日益猖獗&#xff0c;其中IP查询是攻击者获取目标信息的一种常见手段。本文将探讨涉密网络中防护IP查询的关键策略&#xff0c;以确保网络的机密性和安全性。 1. 专用VPN和…...

基础算法(1):排序(1):选择排序

今天对算法产生了兴趣&#xff0c;开始学习基础算法&#xff0c;比如排序&#xff0c;模拟&#xff0c;贪心&#xff0c;递推等内容&#xff0c;算法是很重要的&#xff0c;它是解决某个问题的特定方法&#xff0c;程序数据结构算法&#xff0c;所以对算法的学习是至关重要的&a…...

GeoTrust OV证书

当谈到网站安全性和可信度时&#xff0c;GeoTrust OV证书是一个备受推崇的选择。作为一家备受尊敬的数字证书颁发机构&#xff0c;GeoTrust以其卓越的品牌声誉和高质量的产品而闻名于世。GeoTrust OV证书提供了一系列的安全功能&#xff0c;同时还具有出色的性价比&#xff0c;…...

第一个“hello Android”程序

1、首先安装Android studio&#xff08;跳过&#xff09; Android Studio是由Google推出的官方集成开发环境&#xff08;IDE&#xff09;&#xff0c;专门用于Android应用程序的开发。它是基于JetBrains的IntelliJ IDEA IDE构建的&#xff0c;提供了丰富的功能和工具&#xff0…...

docker-compose安装nacos和msql

docker-compose安装nacos和msql 前言前提已经安装docker-compose&#xff0c;如果没有安装&#xff0c;则可以查看上面系列文章中的安装教程。并且文章中使用的是mobaxterm连接虚拟机。 1、下载2、创建并运行 前言 前提已经安装docker-compose&#xff0c;如果没有安装&#x…...

AnythingLLM:基于RAG方案构专属私有知识库(开源|高效|可定制)

一、前言 继OpenAI和Google的产品发布会之后&#xff0c;大模型的能力进化速度之快令人惊叹&#xff0c;然而&#xff0c;对于很多个人和企业而言&#xff0c;为了数据安全不得不考虑私有化部署方案&#xff0c;从GPT-4发布以来&#xff0c;国内外的大模型就拉开了很明显的差距…...

常见的工作流编排引擎

常见工作流框架&#xff1a;微服务编排引擎 工作流框架还是比较多的&#xff0c;按照语言分类的话&#xff0c;有 Java: jBPM、Activiti、SWF PHP: Tpflow、PHPworkflow Go: Cadence&#xff08;Cadence由Uber开发并开源&#xff0c;Maxim Fateev是Cadence的主架构师&#…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

goreplay

1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具&#xff0c;可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长&#xff0c;测试它所需的工作量也会呈指数级增长。GoRepl…...