当前位置: 首页 > news >正文

大语言模型--能力

能力

大语言模型

  • 能力
  • 从语言模型到任务模型的转化
    • 语言建模
    • 总结


从语言模型到任务模型的转化

在自然语言处理的世界中,语言模型 p p p是一种对代币序列 x 1 : L x_{1:L} x1:L这样的模型能够用于评估序列,例如 p ( t h e , m o u s e , a t e , t h e , c h e e s e ) p(the,mouse,ate,the,cheese) p(the,mouse,ate,the,cheese)同样,它还可以用于在给定提示的条件下生成的序列,如 the mouse ate ⇝ the cheese \text{the mouse ate}⇝\text{the cheese} the mouse atethe cheese

我们使用“适应(Adaptation)”来指代将语言模型转化为任务模型的过程。这个过程需要以下两个输入:

  • 任务的自然语言描述
  • 一组实例训练(输入-输出对)

我们主要有两种方式来进行这种适应:

  • 训练(标准的有监督学习):训练一个新模型,生成能够将输入映射到输出。这可以通过创建一个新模型并利用语言模型作为特征(标记法),或者从现有的语言模型出发,根据实例训练进行更新(配置),或者在这两者之间找到平衡(轻量级的配置)。以上内容将在第十一章进行学习(大模型之适配)。
  • 提示(上下文描述)学习:根据对任务的建一个或一组提示/上下文信息,将其输入到语言模型中以获取基于该任务的生成结果。

语言建模

在语言自然处理(NLP)领域,除了研究大型语言模型,我们还需要深入探讨一些基础任务。比如,我们要对GPT-3的各种功能有研究的认知,并真正理解如何优化给定模型的提示(当前仅通过基于提出的信息就可获得性能的提示已经成为了认知)。这些都是语言模型研究的核心部分。最深入的方法是验证语言模型是否能够有效地模仿和理解语言。

困惑度(Perplexity)是一个重要的指标,是自然语言处理和语言模型中的一个重要概念,用于简化语言模型的性能。它可以解释模型在预测下一个词时的平均不确定性。也就是说,如果一个模型的困惑度较低,那么它在预测下一个词的时候就会更加准确。对于给定的语言模型和一个测试数据集,困惑度被定义为:

P ( X ) = P ( x 1 , x 2 , . . . , x N ) ( − 1 / N ) P(X) = P(x_1,x_2,...,x_N)^{(-1/N)} P(X)=P(x1,x2,...,xN)(1/N)

其中, X = x 1 , x 2 , . . . , x N X=x_{1},x_{2},...,x_{N} X=x1,x2,...,xN是集中测试的词序列, N N N是测试集中的总词数。困惑度与语言模型的质量紧密相关。一个优秀的语言模型能够准确预测测试数据中的词序列,因此它的困惑度应该更低。相反,如果语言模型经常做出了错误的预测,那么它的困惑度就会随之而来。

一个序列的联合概率取决于其长度,并且随着长度的增长,其值趋近于零,这使得困惑度变得难以追踪。在观察上,我们希望对每个词标记(token)的概率 p ( x i ∣ x 1 : i − 1 ) p(x_{i}∣x_{1:i−1}) p(xix1:i1)进行平均。这里的 p(xi∣x1:i−1) 表示给定之前的词序列 x 1 : i − 1 x_{1:i−1} x1:i1后,下一个词 x i x_{i} xi出现的概率。这样做的目的是评估模型在处理各种词标记时的平均性能。

总结

增加模型的大小和示例的数量都有助于提高性能。
有一些启发式的方法可以使语言模型适应感兴趣的任务。
但为什么会有这样的表现,没有人知道。

相关文章:

大语言模型--能力

能力 大语言模型 能力从语言模型到任务模型的转化语言建模总结 从语言模型到任务模型的转化 在自然语言处理的世界中,语言模型 p p p是一种对代币序列 x 1 : L x_{1:L} x1:L​这样的模型能够用于评估序列,例如 p ( t h e , m o u s e , a t e , t h e ,…...

安装LLaMA-Factory微调chatglm3,修改自我认知

安装git clone https://github.com/hiyouga/LLaMA-Factory.git conda create -n llama_factory python3.10 conda activate llama_factory cd LLaMA-Factory pip install -r requirements.txt 之后运行 单卡训练, CUDA_VISIBLE_DEVICES0 python src/train_web.py…...

以太网协议与DNS

以太网协议 以太网协议DNS 以太网协议 以太网用于在计算机和其他网络设备之间传输数据,以太网既包含了数据链路层的内容,也包含了物理层的内容. 以太网数据报: 其中目的IP和源IP不是网络层的目的IP和源IP,而是mac地址.网络层的主要负责是整体的转发过程,数据链路层负责的是局…...

Spring Boot的日志

打印日志 打印日志的步骤: • 在程序中得到日志对象. • 使用日志对象输出要打印的内容 在程序中得到日志对象 在程序中获取日志对象需要使用日志工厂LoggerFactory,代码如下: package com.example.demo;import org.slf4j.Logger; import org.slf4j.LoggerFactory;public c…...

Cisco Packet Tracer配置命令——交换机篇

交换机VLAN配置 在简单的网络环境中,当交换机配置完端口后,即可直接应用,但若在复杂或规模较大的网络环境中,一般还要进行VLAN的规划,因此在交换机上还需进行 VLAN 的配置。交换机的VLAN配置工作主要有VLAN的建立与删…...

python单例模式

设计模式:单例模式(Singleton Pattern)。单例模式确保一个类只有一个实例,并提供一个全局访问点来获取这个实例。 class Singleton:_instance Nonedef __new__(cls):if cls._instance is None:cls._instance super().__new__(cl…...

环境保护:人类生存的最后机会

随着科技的进步和人类文明的不断发展,地球上的自然资源也在以惊人的速度消耗殆尽。人类对于环境的无止境的掠夺,使得我们的地球正面临着前所未有的环境危机。环境污染、全球变暖、大规模灭绝等问题不断困扰着我们,似乎指向了人类生存的最后机…...

头歌-Python 基础

第1关:建模与仿真 1、 建模过程,通常也称为数学优化建模(Mathematical Optimization Modeling),不同之处在于它可以确定特定场景的特定的、最优化或最佳的结果。这被称为诊断一个结果,因此命名为▁▁▁。 填空1答案:决…...

C++数据结构:B树

目录 一. 常见的搜索结构 二. B树的概念 三. B树节点的插入和遍历 3.1 插入B树节点 3.2 B树遍历 四. B树和B*树 4.1 B树 4.2 B*树 五. B树索引原理 5.1 索引概述 5.2 MyISAM 5.3 InnoDB 六. 总结 一. 常见的搜索结构 表示1为在实际软件开发项目中,常用…...

【07】ES6:对象的扩展

一、对象字面量语法扩展 1、属性简写 当属性名称和属性值的变量名称相同时,可以省略冒号的变量名称。 const foo barconst baz { foo } // 等同于 const baz { foo: foo }baz // { foo: bar }function f(x, y) {return { x, y } } // 等同于 function f(x, y)…...

flink找不到隐式项

增加 import org.apache.flink.streaming.api.scala._ 即可...

【网络编程】-- 04 UDP

网络编程 6 UDP 6.1 初识Tomcat 服务端 自定义 STomcat S 客户端 自定义 C浏览器 B 6.2 UDP 6.2.1 udp实现发送消息 接收端: package com.duo.lesson03;import java.net.DatagramPacket; import java.net.DatagramSocket; import java.net.SocketExceptio…...

【脚本】图片-音视频-压缩文件处理

音视频处理 一,图片操作1,转换图片格式2,多张图片合成视频 二,音频操作1,转换音频格式2,分割音频为多段3,合成多段音频 三,视频操作1,转换视频格式2,提取视频…...

跨品牌的手机要怎样相互投屏?iPhone和iPad怎么相互投屏?

选择买不同品牌的手机是基于品牌声誉、产品特点、价格和性价比等多个因素的综合考虑。每个人的需求和偏好不同,选择适合自己的手机品牌是一个个人化的决策。 一些品牌可能更加注重摄影功能,而其他品牌可能更加注重性能和速度。选择不同品牌的手机可以根据…...

图像特征提取-角点

角点特征 大多数人都玩过拼图游戏。首先拿到完整图像的碎片,然后把这些碎片以正确的方式排列起来从而重建这幅图像。如果把拼图游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了。 在拼图时,我们要寻找一些唯一的特征,这些…...

N26:构建无缝体验的平台工程之路-Part 2

​ 在第一​​​​​​部分,我们介绍了 N26 团队为达成 “在 Day 1 实现轻松部署” 的目标而设定的战略规划和开发人员体验图,在这一部分,我们将带您了解该团队如何构建最简可行平台以及该平台如何运作。 01 计划构建最简可行平台 我们通…...

【Hadoop-Distcp】通过Distcp的方式进行两个HDFS集群间的数据迁移

【Hadoop-Distcp】通过Distcp的方式进行两个HDFS集群间的数据迁移 1)Distcp 工具简介及参数说明2)Shell 脚本 1)Distcp 工具简介及参数说明 【Hadoop-Distcp】工具简介及参数说明 2)Shell 脚本 应用场景: 两个实时集…...

【Linux】使用Bash和GNU Parallel并行解压缩文件

介绍 在本教程中,我们将学习如何使用Bash脚本和GNU Parallel实现高效并行解压缩多个文件。这种方法在处理大量文件时可以显著加快提取过程。 先决条件 确保系统上已安装以下内容: BashGNU Parallel 你可以使用以下命令在不同Linux系统上安装它们&am…...

T天池SQL训练营(五)-窗口函数等

–天池龙珠计划SQL训练营 5.1窗口函数 5.1.1窗口函数概念及基本的使用方法 窗口函数也称为OLAP函数。OLAP 是OnLine AnalyticalProcessing 的简称,意思是对数据库数据进行实时分析处理。 为了便于理解,称之为窗口函数。常规的SELECT语句都是对整张表进…...

道可云元宇宙每日资讯|上海市区块链关键技术攻关专项项目立项清单公布

道可云元宇宙每日简报(2023年12月11日)讯,今日元宇宙新鲜事有: 上海市2023年度区块链关键技术攻关专项项目立项清单公布 据上海市科学技术委员会近日发布通知,上海市2023年度“科技创新行动计划”区块链关键技术攻关…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

大话软工笔记—需求分析概述

需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...