当前位置: 首页 > news >正文

将VOC2012格式的数据集转为YOLOV8格式

文章目录

  • 简介
  • 1.数据集格式
    • 1.1数据集目录格式对比
    • 1.2标签格式对比
  • 2.格式转换脚本
  • 3.文件处理脚本

简介

  1. 将voc2012中xml格式的标签转为yolov8中txt格式
  2. 将转换后的图像和标签按照yolov8训练的要求整理为对应的目录结构

1.数据集格式

1.1数据集目录格式对比

(1)VOC2012的数据集文件目录如下:
在这里插入图片描述
(2)YOLOv8需要的文件目录
在这里插入图片描述
同时需要生成关于训练集、验证集和测试集图像目录的txt文件,最好是绝对路径
在这里插入图片描述
在这里插入图片描述

1.2标签格式对比

(1)voc数据集标签
在这里插入图片描述
(2)YOLO数据集标签
每一行代表一个目标框的信息:{class_index} {x_center} {y_center} {width} {height}
在这里插入图片描述

2.格式转换脚本

修改脚本中文件目录,然后运行:

python3 trans_voc_yolo.py
# -*- coding: utf-8 -*-
# 在脚本中,你需要将`voc_labels_folder`和`output_folder`两个变量设置为正确的路径
# 分别是VOC2012数据集的XML标签文件夹路径和转换后的YOLO格式标签文件夹路径。同时,你还需要根据VOC2012数据集的类别列表自定义`class_names`变量的内容。
# 执行脚本后,它会遍历VOC2012数据集的XML标签文件夹中的每个XML文件,解析其中的目标实例信息,并将它们转换为YOLO格式的txt标签文件。
# 转换后的txt文件将保存在指定的输出文件夹中,每个txt文件对应相应的XML文件。
# 请确保脚本中的文件路径正确,并提前创建好输出文件夹。运行脚本后,你会在输出文件夹中得到与VOC2012数据集中的每个XML标签文件对应的YOLO格式txt标签文件。import xml.etree.ElementTree as ET
import osvoc_labels_folder = 'Annotations/'  # VOC2012的XML标签文件夹路径
output_folder = 'yolo_labels/'  # 转换后的YOLO格式标签文件夹路径
class_names = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable','dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']  # 类别名称列表if not os.path.exists(output_folder):os.makedirs(output_folder)for xml_file in os.listdir(voc_labels_folder):tree = ET.parse(os.path.join(voc_labels_folder, xml_file))root = tree.getroot()image_width = int(root.find('size/width').text)image_height = int(root.find('size/height').text)txt_file = xml_file.replace('.xml', '.txt')txt_path = os.path.join(output_folder, txt_file)with open(txt_path, 'w') as f:for obj in root.findall('object'):class_name = obj.find('name').textclass_index = class_names.index(class_name)bbox = obj.find('bndbox')x_min = int(float(bbox.find('xmin').text))y_min = int(float(bbox.find('ymin').text))x_max = int(float(bbox.find('xmax').text))y_max = int(float(bbox.find('ymax').text))x_center = (x_min + x_max) / (2 * image_width)y_center = (y_min + y_max) / (2 * image_height)width = (x_max - x_min) / image_widthheight = (y_max - y_min) / image_heightf.write(f'{class_index} {x_center} {y_center} {width} {height}\n')

3.文件处理脚本

将数据集按照7:2:1的比例划分为训练集、验证集和测试集,并生成相应的目录

python3 split_train_val_test.py
# -*- coding: utf-8 -*-import os
import random
import shutil# 设置文件路径和划分比例
root_path = "/home/lusx/data/voc_yolo/"
image_dir = "JPEGImages/"
label_dir = "labels_sum/"
train_ratio = 0.7
val_ratio = 0.2
test_ratio = 0.1# 创建训练集、验证集和测试集目录
os.makedirs("images/train", exist_ok=True)
os.makedirs("images/val", exist_ok=True)
os.makedirs("images/test", exist_ok=True)
os.makedirs("labels/train", exist_ok=True)
os.makedirs("labels/val", exist_ok=True)
os.makedirs("labels/test", exist_ok=True)# 获取所有图像文件名
image_files = os.listdir(image_dir)
total_images = len(image_files)
random.shuffle(image_files)# 计算划分数量
train_count = int(total_images * train_ratio)
val_count = int(total_images * val_ratio)
test_count = total_images - train_count - val_count# 划分训练集
train_images = image_files[:train_count]
for image_file in train_images:label_file = image_file[:image_file.rfind(".")] + ".txt"shutil.copy(os.path.join(image_dir, image_file), "images/train/")shutil.copy(os.path.join(label_dir, label_file), "labels/train/")# 划分验证集
val_images = image_files[train_count:train_count+val_count]
for image_file in val_images:label_file = image_file[:image_file.rfind(".")] + ".txt"shutil.copy(os.path.join(image_dir, image_file), "images/val/")shutil.copy(os.path.join(label_dir, label_file), "labels/val/")# 划分测试集
test_images = image_files[train_count+val_count:]
for image_file in test_images:label_file = image_file[:image_file.rfind(".")] + ".txt"shutil.copy(os.path.join(image_dir, image_file), "images/test/")shutil.copy(os.path.join(label_dir, label_file), "labels/test/")# 生成训练集图片路径txt文件
with open("train.txt", "w") as file:file.write("\n".join([root_path + "images/train/" + image_file for image_file in train_images]))# 生成验证集图片路径txt文件
with open("val.txt", "w") as file:file.write("\n".join([root_path + "images/val/" + image_file for image_file in val_images]))# 生成测试集图片路径txt文件
with open("test.txt", "w") as file:file.write("\n".join([root_path + "images/test/" + image_file for image_file in test_images]))print("数据划分完成!")

相关文章:

将VOC2012格式的数据集转为YOLOV8格式

文章目录 简介1.数据集格式1.1数据集目录格式对比1.2标签格式对比 2.格式转换脚本3.文件处理脚本 简介 将voc2012中xml格式的标签转为yolov8中txt格式将转换后的图像和标签按照yolov8训练的要求整理为对应的目录结构 1.数据集格式 1.1数据集目录格式对比 (1&…...

DevExpress WinForms Pivot Grid组件,一个类似Excel的数据透视表控件(二)

界面控件DevExpress WinForms的Pivot Grid组件是一个类似Excel的数据透视表控件,用于多维(OLAP)数据分析和跨选项卡报表。在上文中(点击这里回顾>>)我们介绍了DevExpress WinForms Pivot Grid组件的性能、分析服务、数据塑造能力等&…...

为什么越来越多的人从事软件测试行业?

1.市场需求增加:随着数字化转型和互联网的普及,各行各业都需要高质量、稳定可靠的软件来支持其业务运作。因此,对软件测试人员的需求也随之增加。同时,新兴技术的发展,如物联网、大数据、区块链、人工智能等&#xff0…...

ERP数据仓库模型

ERP数据仓库模型建设是一个复杂的过程,涉及到多个主题域。以下是一个详细的设计方案: 确定业务需求和目标 在开始设计数据仓库模型之前,需要了解企业的业务需求和目标。这包括了解企业的运营模式、业务流程、关键绩效指标等。通过与业务部门…...

基于单片机的智能小车 (论文+源码)

1. 系统设计 此次可编程智能小车系统的设计系统,结合STM32单片机,蓝牙模块,循迹模块,电机驱动模块来共同完成本次设计,实现小车的循迹避障功能和手机遥控功能,其整体框架如图2.1所示。其中,采用…...

Redis和MySQL双写一致性实用解析

1、背景 先阐明一下Mysql和Redis的关系:Mysql是数据库,用来持久化数据,一定程度上保证数据的可靠性;Redis是用来当缓存,用来提升数据访问的性能。 关于如何保证Mysql和Redis中的数据一致(即缓存一致性问题…...

win10彻底永久关闭自动更新的方法

win10彻底永久关闭自动更新的方法 文章目录 win10彻底永久关闭自动更新的方法一、禁用Windows Update服务二、在组策略里关闭Win10自动更新相关服务 可以参考这个视频的做法: 教学视频搬用 一、禁用Windows Update服务 1、同时按下键盘 Win R,打开运行…...

【webpack】初始化

webpack 旧项目的问题下一代构建工具 Vite 主角 :webpack安装webpack1,mode的选项2,使用source map 精准定位错误行数3,使用watch mode(观察模式),自动运行4,使用webpack-dev-server工具,自动刷…...

服务器GPU占用,kill -9 PID 用不了,解决办法

PID(progress ID 进程ID) 上图为占用情况,使用下面的指令都不管用 kill -9 PID kill -15 PID # 加入sudo 还是不行 # 等等网上的 chatgpt 提供的其他办法,一圈试了下来还是不管用最后解决办法 首先用下面的指令查看进程的树结构…...

Vue学习笔记-Vue3中的toRaw和markRaw

toRaw 作用:将一个由reactive生成的响应式对象转为普通对象 导入: import {toRaw} from vue 使用方法: let data reactive({k1:v1,k2:v2 }) //将对象变为非响应式的普通对象 let raw_data toRaw(data)使用场景:用于读取响应式…...

【Android Audio Focus 音频焦点】

介绍 Android 中的音频焦点(Audio Focus)是一种机制,用于管理应用程序之间的音频资源竞争。当多个应用程序同时请求使用音频设备时,通过音频焦点机制可以确保最终用户的体验不受影响。 两个或两个以上的 Android 应用可同时向同…...

ChatGPT一周年,一图总结2023生成式AI里程碑大事件时间线

带你探索AI的无限可能!AI一日,人间一年,这句话绝非空谈! AI技术在不断地发展,让我们一起期待它未来更多的可能性吧! 2022 年 11 月 30 日,OpenAI 宣布正式推出 ChatGPT。365 天过去,…...

Python 接口测试response返回数据对比的方法

背景:之前写的接口测试一直没有支持无限嵌套对比key,上次testerhome逛论坛,有人分享了他的框架,看了一下,有些地方不合适我这边自己修改了一下,部署在jenkins上跑完效果还不错,拿出来分享一下。…...

LainChain 原理解析:结合 RAG 技术提升大型语言模型能力

摘要:本文将详细介绍 LainChain 的工作原理,以及如何通过结合 RAG(Retrieval-Aggregated Generation)技术来增强大型语言模型(如 GPT 和 ChatGPT 等)的性能。我们将探讨 COT、TOT、RAG 以及 LangChain 的概…...

6-6 堆排序 分数 10

typedef int Datatype; typedef struct {Datatype* elem; int Length; }SqList; typedef SqList HeapType; void swap(int* a, int* b) {int tmp *a;*a *b;*b tmp; } //建大堆 //m: 结点个数 s: 待下调父结点下标 void HeapAdjust(HeapType H, int s, int m) {int child …...

高翔《自动驾驶与机器人中的SLAM技术》第九、十章载入静态地图完成点云匹配重定位

修改mapping.yaml文件中bag_path: 完成之后会产生一系列的点云文件以及Keyframe.txt文件: ./bin/run_frontend --config_yaml ./config/mapping 生成拼接的点云地图map.pcd文件 : ./bin/dump_map --pose_sourcelidar 。、 完成第一次优…...

英语六级翻译

1. 青海是中国西北部的一个省份,平均海拔 3000 以上,大部分地区为高山和高原。青海省得名全国最大的咸水湖青海湖。青海湖被誉为“中国最美的湖泊”,是最受欢迎的旅游景点之一,也是摄影师和艺术家的天堂。 青海山川壮丽,地大物博。石油和天然气储量丰富,省内许多城市的…...

VMware配置Ubuntu虚拟机

目录标题 1. 相关问题 1. 相关问题 Ubuntu虚拟机与主机能ping通,但是xftp无法连接 解决:Ubuntu安装 OpenSSH 服务器:sudo apt install openssh-server...

Backtrader 文档学习-Platform Concepts

Backtrader 文档学习-Platform Concepts 1.开始之前 导入backtrader ,以及backtrader 的指示器、数据反馈的模块 。 import backtrader as bt import backtrader.indicators as btind import backtrader.feeds as btfeeds看看btind模块下有什么方法和属性&#x…...

策略模式(常用)

策略模式的简介 在软件开发中,设计模式是为了解决常见问题而提供的一套可重用的解决方案。策略模式(Strategy Pattern)是其中一种常见的设计模式,它属于行为型模式。该模式的核心思想是将不同的算法封装成独立的策略类&#xff0c…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中&#xff0…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...