连锁零售企业如何优化网络性能?
在传统的WAN网络中,分支机构通常通过专线或者MPLS连接到总部或数据中心,但这种连接受制于地理位置。而SD-WAN(Software-Defined Wide Area Network)这种创新的网络架构,它通过软件定义和虚拟化技术,将分支机构与总部、数据中心以及云服务相连接。不再受地域限制,分支机构可以通过公共互联网与总部或数据中心进行可靠的连接。这为企业在全球范围内建立分布式网络架构提供了便利,并为其带来更大的灵活性和成本效益。
许多企业担心SD-WAN(软件定义广域网)是否适用于他们的地理位置,并对其在解决跨地域组网方面的优势存在疑虑。尤其是连锁零售企业组网,需要将分布在不同地区的商店、分支、总部进行网络连接,受地域限制是其最常见的问题。
案例背景:
某连锁零售企业是一家规模庞大的全球连锁零售企业,拥有数百家分支店铺分布在不同的城市和地区。由于企业的快速扩张和地理分散性,他们面临着网络性能和通信方面的挑战。分支机构的数据传输受限于昂贵而不稳定的专用线路,导致网络延迟、可靠性问题以及业务连续性方面的瓶颈。
需求分析:
-
解决地理位置分散的分支、店铺互联问题。
-
提供稳定、可靠的网络,解决业务连续性问题。
-
分支、店铺统一管理,降低维护成本。
方案部署
SD-WAN企业组网是灵活且适用于各种地理位置和网络需求的解决方案,通过集中管理、控制所有分支机构、店铺的网络流量,使得跨地域组网变得更加容易。
案例用户可以轻松扩展其网络,覆盖更广泛的地理区域,无需为每个分支机构单独投资和维护昂贵的专用线路。除此之外,SD-WAN网络可靠性和可用性的提高,有效提升案例企业的业务连续性和员工生产力。
SD-WAN方案亮点
-
网络覆盖扩展,企业能够轻松将所有分支机构连接在一起,支持全球业务发展。
-
SD-WAN经济高效的连接方式,有效降低网络成本。
-
提高网络可靠性和可用性,减少网络延迟和故障风险,增强业务连续性。
-
简化管理,统一监控,实现快速故障诊断和配置更新。
该连锁零售企业通过部署SD-WAN企业组网解决方案,成功解决了地理分散性和网络通信方面的挑战,提升了网络性能,并且通过SD-WAN方案扩容,也能更好地应对后续全球业务扩张的需求。
相关文章:
连锁零售企业如何优化网络性能?
在传统的WAN网络中,分支机构通常通过专线或者MPLS连接到总部或数据中心,但这种连接受制于地理位置。而SD-WAN(Software-Defined Wide Area Network)这种创新的网络架构,它通过软件定义和虚拟化技术,将分支机…...
[已解决]HttpMessageNotReadableException: JSON parse error: Unexpected character:解析JSON时出现异常的问题分析与解决方案
🌷🍁 博主 libin9iOak带您 Go to New World.✨🍁 🦄 个人主页——libin9iOak的博客🎐 🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~ἳ…...
华为OD机试 - 找数字(Java JS Python C)
题目描述 小扇和小船今天又玩起来了数字游戏, 小船给小扇一个正整数 n(1 ≤ n ≤ 1e9),小扇需要找到一个比 n 大的数字 m,使得 m 和 n 对应的二进制中 1 的个数要相同,如: 4对应二进制100 8对应二进制1000 其中1的个数都为1个 现在求 m 的最小值。 输入描述 输入一个…...
ElasticSearch - networking配置global
版本8.11 单机部署了一个节点 在elasticsearch.yml中 配置了network.host: 8.8.8.8(之前为127.0.0.1) 但启动服务失败 报错信息为: BindTransportException: Failed to bind to 8.8.8.8:[9300-9399] 为啥要配置8.8.8.8 是因为参考的官方说明 Networking | Elasticsearch Gu…...
GPT4停止订阅付费了怎么办? 怎么升级ChatGPT plus?提供解决方案
11月中旬日OpenAI 暂时关闭所有的升级入口之后,很多小伙伴就真的在排队等待哦。其实有方法可以绕开排队,直接付费订阅升级GPT的。赶紧用起来立马“插队”成功!亲测~~~ 一、登录ChatGPT账号 1、没有账号可以直接注册一个,流程超级…...
MySQL数据库,视图、存储过程与存储函数
数据库对象: 常见的数据库对象: 视图: 视图是一种虚拟表,本身是不具有数据的占用很少的内存空间。 视图建立在已有表的基础上,视图赖以建立的这些表称为基表。 视图的创建和删除只影响视图本身,不影响对…...
【Pytorch】学习记录分享3——PyTorch 自动微分与线性回归
【【Pytorch】学习记录分享3——PyTorch 自动微分与线性回归 1. autograd 包,自动微分2. 线性模型回归演示3. GPU进行模型训练 小结:只需要将前向传播设置好,调用反向传播接口,即可实现反向传播的链式求导 1. autograd 包&#x…...
Android Studio实现俄罗斯方块
文章目录 一、项目概述二、开发环境三、详细设计3.1 CacheUtils类3.2 BlockAdapter类3.3 CommonAdapter类3.4 SelectActivity3.5 MainActivity 四、运行演示五、项目总结 一、项目概述 俄罗斯方块是一种经典的电子游戏,最早由俄罗斯人Alexey Pajitnov在1984年创建。…...
【Hive】——DDL(DATABASE)
1 概述 2 创建数据库 create database if not exists test_database comment "this is my first db" with dbproperties (createdByAllen);3 描述数据库信息 describe 可以简写为desc extended 可以展示更多信息 describe database test_database; describe databa…...
【华为OD题库-092】单词加密-java
题目 输入一个英文句子,句子中包含若干个单词,每个单词间有一个空格需要将句子中的每个单词按照要求加密输出。要求: 1)单词中包括元音字符(‘aeuio’、‘AEUIO’,大小写都算),则将元音字符替换成’*) 2)单词中不包括元音字符&…...
构建一个简单的 npm 验证项目
构建一个简单的 npm 验证项目 0. 背景1. 构建过程1-1. 创建项目并初始化1-2. 安装 mjs 支持的 package1-3. 在 package.json 中添加 mjs 脚本1-4. 创建 index.mjs 文件1-5. 执行脚本 2. (Optional)环境变量配置 0. 背景 工作上需要验证一下 npm 程序,所以需要构建一…...
利用vue-okr-tree实现飞书OKR对齐视图
vue-okr-tree-demo 因开发需求需要做一个类似飞书OKR对齐视图的功能,参考了两位大神的代码: 开源组件vue-okr-tree作者博客地址:http://t.csdnimg.cn/5gNfd 对组件二次封装的作者博客地址:http://t.csdnimg.cn/Tjaf0 开源组件v…...
持续集成交付CICD:CentOS 7 安装SaltStack
目录 一、理论 1.SaltStack 二、实验 1.主机一安装master 2.主机二安装第一台minion 3.主机三安装第二台minion 4.测试SaltStack 三、问题 1.CentOS 8 如何安装SaltStack 一、理论 1.SaltStack (1)概念 SaltStack是基于python开发的一套C/S自…...
vscode 环境配置
必备插件 配置调试 {// Use IntelliSense to learn about possible attributes.// Hover to view descriptions of existing attributes.// For more information, visit: https://go.microsoft.com/fwlink/?linkid830387"version": "0.2.0","confi…...
pytorch文本分类(二):引入pytorch处理文本数据
pytorch文本数据处理 目录 pytorch文本数据处理1. Pytorch背景2. 数据分割3. 数据加载Dataset代码分析字典的用途代码修改的目的 Dataloader 4. 练习 原学习任务链接 相关数据链接:https://pan.baidu.com/s/1iwE3LdRv3uAkGGI2fF9BjA?pwdro0v 提取码:ro…...
Centos硬盘操作合集
一、硬盘命令说明 lsblk 列出系统上的所有磁盘列表 查看磁盘列表 参数意义 blkid 列出硬盘UUID [rootzs ~]# blkid /dev/sda1: UUID"77dcd110-dad6-45b8-97d4-fa592dc56d07" TYPE"xfs" /dev/sda2: UUID"oDT0oD-LCIJ-Xh7r-lBfd-axLD-DRiN-Twa…...
三大循环语句
goto 我们看代码去感受goto的循环,那么goto循环最经常搭配的就是loop,那么就像如下代码 这个代码中loop:就是个标志,然后程序正常向下运行,goto loop;就会让她回到loop,然后在运行到goto loop…...
Mybatis详解
MyBatis是什么 MyBatis是一个持久层框架,用于简化数据库操作的开发。它通过将SQL语句和Java方法进行映射,实现了数据库操作的解耦和简化。以下是MyBatis的优点和缺点: 优点: 1. 灵活性:MyBatis允许开发人员编写原生的…...
spring cloud alibaba RocketMQ 最佳实践
目录 概述使用准备工作引入依赖创建Topic代码应用启动消息接收再扩展一个 结束 概述 github 文档地址 rocket mq example RocketMQ 版本为 5.1.4 使用 准备工作 阅读此文需要事先准备 RocketMQ ,如有疑问,请移步 RocketMQ 服务搭建 引入依赖 此处…...
php使用OpenCV实现从照片中截取身份证区域照片
<?php // 获取上传的文件 $file $_FILES[file]; // 获取文件的临时名称 $tmp_name $file[tmp_name]; // 获取文件的类型 $type $file[type]; // 获取文件的大小 $size $file[size]; // 获取文件的错误信息 $error $file[error]; // 检查文件是否上传成功 if ($er…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...
leetcode73-矩阵置零
leetcode 73 思路 记录 0 元素的位置:遍历整个矩阵,找出所有值为 0 的元素,并将它们的坐标记录在数组zeroPosition中置零操作:遍历记录的所有 0 元素位置,将每个位置对应的行和列的所有元素置为 0 具体步骤 初始化…...
渗透实战PortSwigger Labs指南:自定义标签XSS和SVG XSS利用
阻止除自定义标签之外的所有标签 先输入一些标签测试,说是全部标签都被禁了 除了自定义的 自定义<my-tag onmouseoveralert(xss)> <my-tag idx onfocusalert(document.cookie) tabindex1> onfocus 当元素获得焦点时(如通过点击或键盘导航&…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
