利用svm进行模型训练
一、步骤
1、将文本数据转换为特征向量 : tf-idf
2、使用这些特征向量训练SVM模型
二、代码
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_reportdef preprocess_data(data):texts, labels = zip(*data)vectorizer = TfidfVectorizer()X = vectorizer.fit_transform(texts).todense()return X, labels, vectorizerdef print_sorted_feature_weights(X, vectorizer):feature_name = vectorizer.get_feature_names_out()for i, doc in enumerate(X):nonzero_idx = doc.nonzero()[1]dic = {idx: doc[0, idx] for idx in nonzero_idx}sorted_dic = dict(sorted(dic.items(), key=lambda x: x[1], reverse=True))data_ = {feature_name[k]: v for k, v in sorted_dic.items()}print(data_)def train_and_evaluate_model(X_train, X_test, y_train, y_test):svm_classifier = SVC(kernel='linear', random_state=42)svm_classifier.fit(X_train, y_train)y_pred = svm_classifier.predict(X_test)return y_test, y_preddef main():# 示例数据集data = [("I love this product!", 1),("This is terrible.", 0),("The movie was fantastic.", 1),("I dislike this feature.", 0),("Amazing experience!", 1),("Not recommended.", 0)]# 数据预处理X, labels, vectorizer = preprocess_data(data)# 打印排序后的特征权重print_sorted_feature_weights(X, vectorizer)# 将数据集拆分为训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)# 训练和评估模型y_true, y_pred = train_and_evaluate_model(X_train, X_test, y_train, y_test)# 测试集是哪些print_sorted_feature_weights(X_test,vectorizer)# 评估模型性能accuracy = accuracy_score(y_true, y_pred)report = classification_report(y_true, y_pred)# 打印模型性能指标print(f"Accuracy: {accuracy}")print("Classification Report:\n", report)if __name__ == "__main__":main()
三、结果
![对应着:test_texts= [("I love this product!", 1),("This is terrible.", 0)]](https://img-blog.csdnimg.cn/direct/7704395ee0314cf394f64fa30447d866.png)
相关文章:

利用svm进行模型训练
一、步骤 1、将文本数据转换为特征向量 : tf-idf 2、使用这些特征向量训练SVM模型 二、代码 from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import SVC from sklearn.m…...

【Docker】WSL 2 上的 Docker 搭建和入门
▒ 目录 ▒ 🛫 导读开发环境 1️⃣ 安装安装Docker Desktop for Windows 2️⃣ 环境配置3️⃣ hello world第一次运行再次运行分析总结 📖 参考资料 🛫 导读 开发环境 版本号描述文章日期2023-12-14操作系统Win11 - 22H222621.2715WSL2 C:…...
pytorch环境配置
1.创建环境 conda create --name pytorch python3.11.5 2.激活环境 source activate pytorch 3.添加国内镜像源: conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsin…...

电子眼+无人机构建平安城市视频防控监控方案
电子眼(也称为监控摄像机)可以通过安装在城市的不同角落,实时监控城市的各个地方。它们可以用于监测交通违法行为、监控公共场所的安全以及实时监测特定区域的活动情况。通过电子眼的应用,可以帮助警方及时发现并响应各类安全事件…...
mysql binlog_ignore_db参数的效果详解
我们知道 binlog 会记录数据库所有执行的 DDL 和 DML 语句(除了数据查询语句select、show等)。 我们可以在mysql配置文件中关闭binlog [mysqld] skip-log-bin注意默认情况下会记录所有库的操作,那么如果我们有另类需求,比如说只让某个库记录 binglog 或排除某个库记录…...

HI3559AV100和FPGA 7K690T的PCIE接口调试记录-续
上文https://blog.csdn.net/fzktongyong/article/details/134963814?spm1001.2014.3001.5501 上一篇文中PCIE实测速度和理论计算有较大偏差,经过尝试后有所提升。 1、提升效果 1)、RC写操作,实测速度817MB/s(410407&…...
vivado约束方法4
时序约束向导 定时约束向导确定合成或上缺少的定时约束实现的设计。它分析了网表、时钟网络连接和现有的定时限制,以便根据《超快设计方法指南》提供建议用于FPGA和SoC(UG949)。以下11涵盖了三类约束页面,然后是摘要。包括以下步…...
LeetBook学习-C语言-数组
1.数组的操作 1.1 读取元素 知道内存地址可以快速访问,时间复杂度为O(1) 1.2 查找元素 从首地址开始,逐个查找,最坏时间复杂度为O(N) 1.3 插入元素 插入元素,首先位置要腾空,而后执行插入操作。 1.4 删除元素 删除掉某…...

23种策略模式之策略模式
23种策略模式之策略模式 文章目录 23种策略模式之策略模式前言优缺点使用场景角色定义UML模拟示例小结 前言 在软件开发中,设计模式是为了解决常见问题而提供的一套可重用的解决方案。策略模式(Strategy Pattern)是其中一种常见的设计模式&a…...

【笔试强化】Day 2
文章目录 一、选择1.2.(写错)3.4.5.6.(不会)7.(不清晰)8. (不会)9.10.(写错) 二、编程1. 排序子序列解法:代码: 2. 倒置字符串解法&am…...

windows禁用系统更新
1.在winr运行框中输入services.msc,打开windows服务窗口。 services.msc 2.在服务窗口中,我们找到Windows update选项,如下图所示: 3.双击windows update服务,我们把启动类型改为禁用,如下图所示ÿ…...

ES6原生音乐播放器(有接口)
视频展示 ES6音乐播放器 项目介绍 GutHub地址:GitHub - baozixiangqianchong/ES6_MusicPlayer: 音乐播放器 ES6_MusicPlayer 是基于JavaScriptES6Ajax等通过原生构建的项目。能够充分锻炼JS能力。 本项目有主页、详情页、歌单页面三部分组成 ├── assets&…...

Django和ECharts异步请求示例
前提条件 创建django项目,安装配置过程这里就不讲述了。 后端url http://127.0.0.1:8000/echarts/demo/ view视图函数 from django.http import HttpResponse import jsondef EchartsDemo(request):data {}categories ["衬衫","羊毛衫",&…...

Java序列化、反序列化-为什么要使用序列化?Serializable接口的作用?
什么是序列化和反序列化? 把对象转换成字节序列把字节序列恢复成对象 结合OSI七层协议模型,序列化和反序列化是在那一层做的? 在OSI七层模型中,序列化工作的层级是表示层。这一层的主要功能包括把应用层的对象转换成一段连续的二进…...
连锁零售企业如何优化网络性能?
在传统的WAN网络中,分支机构通常通过专线或者MPLS连接到总部或数据中心,但这种连接受制于地理位置。而SD-WAN(Software-Defined Wide Area Network)这种创新的网络架构,它通过软件定义和虚拟化技术,将分支机…...

[已解决]HttpMessageNotReadableException: JSON parse error: Unexpected character:解析JSON时出现异常的问题分析与解决方案
🌷🍁 博主 libin9iOak带您 Go to New World.✨🍁 🦄 个人主页——libin9iOak的博客🎐 🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~ἳ…...
华为OD机试 - 找数字(Java JS Python C)
题目描述 小扇和小船今天又玩起来了数字游戏, 小船给小扇一个正整数 n(1 ≤ n ≤ 1e9),小扇需要找到一个比 n 大的数字 m,使得 m 和 n 对应的二进制中 1 的个数要相同,如: 4对应二进制100 8对应二进制1000 其中1的个数都为1个 现在求 m 的最小值。 输入描述 输入一个…...

ElasticSearch - networking配置global
版本8.11 单机部署了一个节点 在elasticsearch.yml中 配置了network.host: 8.8.8.8(之前为127.0.0.1) 但启动服务失败 报错信息为: BindTransportException: Failed to bind to 8.8.8.8:[9300-9399] 为啥要配置8.8.8.8 是因为参考的官方说明 Networking | Elasticsearch Gu…...

GPT4停止订阅付费了怎么办? 怎么升级ChatGPT plus?提供解决方案
11月中旬日OpenAI 暂时关闭所有的升级入口之后,很多小伙伴就真的在排队等待哦。其实有方法可以绕开排队,直接付费订阅升级GPT的。赶紧用起来立马“插队”成功!亲测~~~ 一、登录ChatGPT账号 1、没有账号可以直接注册一个,流程超级…...

MySQL数据库,视图、存储过程与存储函数
数据库对象: 常见的数据库对象: 视图: 视图是一种虚拟表,本身是不具有数据的占用很少的内存空间。 视图建立在已有表的基础上,视图赖以建立的这些表称为基表。 视图的创建和删除只影响视图本身,不影响对…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
OCR MLLM Evaluation
为什么需要评测体系?——背景与矛盾 能干的事: 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。干不了的事: 碰到复杂表格(合并单元…...
数据库正常,但后端收不到数据原因及解决
从代码和日志来看,后端SQL查询确实返回了数据,但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离,并且ai辅助开发的时候,很容易出现前后端变量名不一致情况,还不报错,只是单…...
41道Django高频题整理(附答案背诵版)
解释一下 Django 和 Tornado 的关系? Django和Tornado都是Python的web框架,但它们的设计哲学和应用场景有所不同。 Django是一个高级的Python Web框架,鼓励快速开发和干净、实用的设计。它遵循MVC设计,并强调代码复用。Django有…...

python基础语法Ⅰ
python基础语法Ⅰ 常量和表达式变量是什么变量的语法1.定义变量使用变量 变量的类型1.整数2.浮点数(小数)3.字符串4.布尔5.其他 动态类型特征注释注释是什么注释的语法1.行注释2.文档字符串 注释的规范 常量和表达式 我们可以把python当作一个计算器,来进行一些算术…...
用js实现常见排序算法
以下是几种常见排序算法的 JS实现,包括选择排序、冒泡排序、插入排序、快速排序和归并排序,以及每种算法的特点和复杂度分析 1. 选择排序(Selection Sort) 核心思想:每次从未排序部分选择最小元素,与未排…...