当前位置: 首页 > news >正文

【深度学习】强化学习(二)马尔可夫决策过程

文章目录

  • 一、强化学习问题
    • 1、交互的对象
    • 2、强化学习的基本要素
    • 3、策略(Policy)
    • 4、马尔可夫决策过程
      • 1. 基本元素
      • 2. 交互过程的表示
      • 3. 马尔可夫过程(Markov Process)
      • 4. 马尔可夫决策过程(MDP)
      • 5. 轨迹的概率计算
      • 6. 给西瓜浇水问题的马尔可夫决策过程

一、强化学习问题

  强化学习的基本任务是通过智能体与环境的交互学习一个策略,使得智能体能够在不同的状态下做出最优的动作,以最大化累积奖励。这种学习过程涉及到智能体根据当前状态选择动作,环境根据智能体的动作转移状态,并提供即时奖励的循环过程。

1、交互的对象

  在强化学习中,有两个可以进行交互的对象:智能体环境

  • 智能体(Agent):能感知外部环境的状态(State)和获得的奖励(Reward),并做出决策(Action)。智能体的决策和学习功能使其能够根据状态选择不同的动作,学习通过获得的奖励来调整策略。

  • 环境(Environment):是智能体外部的所有事物,对智能体的动作做出响应,改变状态,并反馈相应的奖励。

2、强化学习的基本要素

  强化学习涉及到智能体与环境的交互,其基本要素包括状态、动作、策略、状态转移概率和即时奖励。

  • 状态(State):对环境的描述,可能是离散或连续的。

  • 动作(Action):智能体的行为,也可以是离散或连续的。

  • 策略(Policy):智能体根据当前状态选择动作的概率分布。

  • 状态转移概率(State Transition Probability):在给定状态和动作的情况下,环境转移到下一个状态的概率。

  • 即时奖励(Immediate Reward):智能体在执行动作后,环境反馈的奖励。

3、策略(Policy)

  策略(Policy)就是智能体如何根据环境状态 𝑠 来决定下一步的动作 𝑎(智能体在特定状态下选择动作的规则或分布)。

  • 确定性策略(Deterministic Policy) 直接指定智能体应该采取的具体动作
  • 随机性策略(Stochastic Policy) 则考虑了动作的概率分布,增加了对不同动作的探索。

上述概念可详细参照:【深度学习】强化学习(一)强化学习定义

4、马尔可夫决策过程

  为了简化描述,将智能体与环境的交互看作离散的时间序列。智能体从感知到的初始环境 s 0 s_0 s0 开始,然后决定做一个相应的动作 a 0 a_0 a0,环境相应地发生改变到新的状态 s 1 s_1 s1,并反馈给智能体一个即时奖励 r 1 r_1 r1,然后智能体又根据状态 s 1 s_1 s1做一个动作 a 1 a_1 a1,环境相应改变为 s 2 s_2 s2,并反馈奖励 r 2 r_2 r2。这样的交互可以一直进行下去: s 0 , a 0 , s 1 , r 1 , a 1 , … , s t − 1 , r t − 1 , a t − 1 , s t , r t , … , s_0, a_0, s_1, r_1, a_1, \ldots, s_{t-1}, r_{t-1}, a_{t-1}, s_t, r_t, \ldots, s0,a0,s1,r1,a1,,st1,rt1,at1,st,rt,,其中 r t = r ( s t − 1 , a t − 1 , s t ) r_t = r(s_{t-1}, a_{t-1}, s_t) rt=r(st1,at1,st) 是第 t t t 时刻的即时奖励。这个交互过程可以被视为一个马尔可夫决策过程(Markov Decision Process,MDP)
在这里插入图片描述

1. 基本元素

  • 状态( s t s_t st):

    • 表示智能体与环境交互中的当前情况或环境状态。
    • 在时间步𝑡时,智能体和环境的状态为 s t s_t st
  • 动作 ( a t a_t at):

    • 表示智能体在给定状态 s t s_t st下采取的动作。
    • 在时间步𝑡时,智能体选择执行动作 a t a_t at
  • 奖励 ( r t r_t rt):

    • 表示在智能体采取动作 a t a_t at后,环境反馈给智能体的即时奖励。
    • 在时间步𝑡时,智能体获得奖励 r t r_t rt

2. 交互过程的表示

  • 智能体与环境的交互过程可以用离散时间序列表示:
    s 0 , a 0 , s 1 , r 1 , a 1 , … , s t − 1 , r t − 1 , a t − 1 , s t , r t , … , s_0, a_0, s_1, r_1, a_1, \ldots, s_{t-1}, r_{t-1}, a_{t-1}, s_t, r_t, \ldots, s0,a0,s1,r1,a1,,st1,rt1,at1,st,rt,,
  • 在每个时间步,智能体根据当前状态选择一个动作,环境根据智能体的动作和当前状态发生转移,并反馈即时奖励。
  • 这种时间序列描述强调了智能体和环境之间的交互,以及在时间步𝑡时智能体和环境的状态、动作和奖励。这符合马尔可夫决策过程的基本定义,其中马尔可夫性质要求当前状态包含了所有与未来预测相关的信息。

3. 马尔可夫过程(Markov Process)

  • 定义: 马尔可夫过程是一组具有马尔可夫性质的随机变量序列 s 0 , s 1 , … , s t ∈ S s_0, s_1, \ldots, s_t \in \mathcal{S} s0,s1,,stS,其中 S \mathcal{S} S 是状态空间。

  • 马尔可夫性质: 当前状态 s t s_t st 对未来的预测只依赖于当前状态,而不依赖于过去的状态序列 s t − 1 , s t − 2 , … , s 0 s_{t-1}, s_{t-2}, \ldots, s_0 st1,st2,,s0),即
    p ( s t + 1 ∣ s t , … , s 0 ) = p ( s t + 1 ∣ s t ) p(s_{t+1} | s_t, \ldots, s_0) = p(s_{t+1} | s_t) p(st+1st,,s0)=p(st+1st)

  • 状态转移概率 p ( s t + 1 ∣ s t ) p(s_{t+1} | s_t) p(st+1st) 表示在给定当前状态 s t s_t st 的条件下,下一个时刻的状态为 s t + 1 s_{t+1} st+1 的概率,满足 ∑ S t + 1 ∈ S p ( s t + 1 ∣ s t ) = 1 \sum_{S_{t+1} \in \mathcal{S}}p(s_{t+1} | s_t) = 1 St+1Sp(st+1st)=1

4. 马尔可夫决策过程(MDP)

  • 加入动作: MDP 在马尔可夫过程的基础上引入了动作变量 a t a_t at,表示智能体在状态 s t s_t st 时选择的动作。

  • 状态转移概率的扩展: 在MDP中,下一个时刻的状态 s t + 1 s_{t+1} st+1 不仅依赖于当前状态 s t s_t st还依赖于智能体选择的动作 a t a_t at
    p ( s t + 1 ∣ s t , a t , … , s 0 , a 0 ) = p ( s t + 1 ∣ s t , a t ) p(s_{t+1} | s_t,a_t, \ldots, s_0, a_0) =p(s_{t+1} | s_t, a_t) p(st+1st,at,,s0,a0)=p(st+1st,at)

  • 马尔可夫决策过程的特点: 在MDP中,智能体的决策不仅受当前状态的影响,还受到智能体选择的动作的影响,从而更加适应需要制定决策的场景。
    在这里插入图片描述

5. 轨迹的概率计算

  • 轨迹表示: 给定策略 π ( a ∣ s ) \pi(a|s) π(as),MDP的一个轨迹 τ \tau τ 表示智能体与环境交互的一系列状态、动作和奖励的序列:
    τ = s 0 , a 0 , s 1 , r 1 , a 1 , … , s T − 1 , r T − 1 , a T − 1 , s T , r T , … , \tau=s_0, a_0, s_1, r_1, a_1, \ldots, s_{T-1}, r_{T-1}, a_{T-1}, s_T, r_T, \ldots, τ=s0,a0,s1,r1,a1,,sT1,rT1,aT1,sT,rT,,

  • 概率计算公式:
    p ( τ ) = p ( s 0 , a 0 , s 1 , r 1 , … ) p(\tau) = p(s_0, a_0, s_1, r_1, \ldots) p(τ)=p(s0,a0,s1,r1,) p ( τ ) = p ( s 0 ) ∏ t = 0 T − 1 π ( a t ∣ s t ) p ( s t + 1 ∣ s t , a t ) p(\tau) = p(s_0) \prod_{t=0}^{T-1} \pi(a_t|s_t) p(s_{t+1}|s_t, a_t) p(τ)=p(s0)t=0T1π(atst)p(st+1st,at)

    • p ( s 0 ) p(s_0) p(s0) 是初始状态的概率。
    • π ( a t ∣ s t ) \pi(a_t|s_t) π(atst)策略:在状态 s t s_t st 下选择动作 a t a_t at 的概率。
    • p ( s t + 1 ∣ s t , a t ) p(s_{t+1}|s_t, a_t) p(st+1st,at) 是在给定当前状态 s t s_t st 和动作 a t a_t at 的条件下,下一个时刻的状态为 s t + 1 s_{t+1} st+1 的概率(状态转移概率
      )。
  • 轨迹的联合概率:

    • 通过对轨迹中每个时刻的概率连乘,得到整个轨迹的联合概率。

6. 给西瓜浇水问题的马尔可夫决策过程

在这里插入图片描述
  在给西瓜浇水的马尔可夫决策过程中,只有四个状态(健康、缺水、溢水、凋亡)和两个动作(浇水、不浇水),在每一
步转移后,若状态是保持瓜苗健康则获得奖赏1 ,瓜苗缺水或溢水奖赏为- 1 , 这时通过浇水或不浇水可以恢复健康状态,当瓜苗凋亡时奖赏是最小值-100 且无法恢复。图中箭头表示状态转移,箭头旁的 a , p , r a,p,r a,p,r分别表示导致状态转移的动作、转移概率以及返回的奖赏.容易看出,最优策略在“健康”状态选择动作 “浇水”、在 “溢水”状态选择动作“不浇水”、在 “缺水”状态选择动作 “浇水”、在 “凋亡”状态可选择任意动作。

相关文章:

【深度学习】强化学习(二)马尔可夫决策过程

文章目录 一、强化学习问题1、交互的对象2、强化学习的基本要素3、策略(Policy)4、马尔可夫决策过程1. 基本元素2. 交互过程的表示3. 马尔可夫过程(Markov Process)4. 马尔可夫决策过程(MDP)5. 轨迹的概率计…...

Vue.js 使用基础知识

Vue.js 是一款用于构建用户界面的渐进式框架,它专注于视图层。Vue.js 不同于传统的 JavaScript 框架,它采用了组件化的开发方式,使得开发者可以更加高效和灵活地构建交互式的 Web 应用程序。 目录 什么是 Vue.js安装 Vue.jsVue 实例模板语法插…...

Linux---计划任务

本章主要介绍如何创建计划任务 使用 at 创建计划任务使用 crontab 创建计划任务 有时需要在某个指定的时间执行一个操作,此时就要使用计划任务了。计划任务有两种: 一个是at计划任务,另一个是 crontab计划任务。 下面我们分别来看这两种计划…...

.NET微信网页开发之通过UnionID机制解决多应用用户帐号统一问题

背景 随着公司微信相关业务场景的不断拓展,从最初的一个微信移动应用、然后发展成微信公众号应用、然后又有了微信小程序应用。但是随着应用的拓展,如何保证相同用户的微信用户在不同应用中登录的同一个账号呢?今天的主题就来了.NET微信网页…...

【docker】docker入门与安装

Docker 一、入门 Docker的主要目标是:Build, Ship and Run Any App, Anywhere,也就是通过对应用组件的封装、分发、部署、运行等生命周期的管理,使用户的APP及其运行环境能做到一次镜像,处处运行。 Docker运行速度快的原因 Docker有比虚拟…...

视觉学习笔记12——百度飞浆框架的PaddleOCR 安装、标注、训练以及测试

系列文章目录 虚拟环境部署 参考博客1 参考博客2 参考博客3 参考博客4 文章目录 系列文章目录一、简单介绍1.OCR介绍2.PaddleOCR介绍 二、安装1.anaconda基础环境1)anaconda的基本操作2)搭建飞浆的基础环境 2.安装paddlepaddle-gpu版本1)安装…...

深入分析ClassLocader工作机制

文章目录 一、ClassLoader简介1. 概念2. ClassLoader类结构分析 二、ClassLoader的双亲委派机制三、Class文件的加载流程1. 简介2. 加载字节码到内存3. 验证与解析4. 初始化Class对象 四、常见加载类错误分析1. ClassNotFoundException2. NoClassDefFoundError3. UnsatisfiledL…...

算法通关村第十二关—字符串转换(青铜)

一、转换成小写字母 LeetCode709.给你一个字符串s,将该字符串中的大写字母转换成相同的小写字母,返回新的字符串。 示例1: 输入:s"Hello" 输出:"hello" 示例2: 输入:s&qu…...

C#基础与进阶扩展合集-基础篇(持续更新)

目录 本文分两篇,进阶篇点击:C#基础与进阶扩展合集-进阶篇 一、基础入门 Ⅰ 关键字 Ⅱ 特性 Ⅲ 常见异常 Ⅳ 基础扩展 1、哈希表 2、扩展方法 3、自定义集合与索引器 4、迭代器与分部类 5、yield return 6、注册表 7、不安全代码 8、方法…...

ReactJs笔记摘录

文章目录 前言目录结构组件动态组件高阶组件 Hook函数useStateuseEffectuseContextuseReduceruseCallbackuseMemo JSX语法根元素与斜杠使用变量推荐使用className替代class属性写法三元表达式 vs &&antd和tailwindcss 组件通信父传子:props和自定义函数事件…...

2023 re:Invent使用 PartyRock 和 Amazon Bedrock 安全高效构建 AI 应用程序

前言 本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 亚马逊云科技开发者社区, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道 “Your Data, Your AI, Your Future.(你的数据,你的AI&…...

Mac 打不开github解决方案

序言 github 时有打不开的情况,为此很是烦恼,这里分享一下如何解决这种问题,其实问题的本质是在访问github网页时无法通过github.com的二级域名进行动态域名解析。 解决方案 手动配置静态文件hosts,将该域名和IP的映射关系添加…...

十五 动手学深度学习v2计算机视觉 ——全连接神经网络FCN

文章目录 FCN FCN 全卷积网络先使用卷积神经网络抽取图像特征,然后通过卷积层将通道数变换为类别个数,最后通过转置卷积层将特征图的高和宽变换为输入图像的尺寸。 因此,模型输出与输入图像的高和宽相同,且最终输出通道包含了该空…...

elementUI中的 “this.$confirm“ 基本用法,“this.$confirm“ 调换 “确认“、“取消“ 按钮的位置

文章目录 前言具体操作总结 前言 elementUI中的 "this.$confirm" 基本用法&#xff0c;"this.$confirm" 调换 "确认"、"取消" 按钮的位置 具体操作 基本用法 <script> this.$confirm(这是数据&#xff08;res.data&#xff0…...

K8S 常用命令

获取所有的pod资源&#xff1a; kubectl get pod 获取所有的命名空间&#xff1a; kubectl get namespace 获取所有的Deployment资源&#xff1a; kubectl get deployment 删除指定的deploy: kubectl delete deploy nginx 获取所有的服务&#xff1a; kubectl get serv…...

12.使用 Redis 优化登陆模块

目录 1. 使用 Redis 优化登陆模块 1.1 使用 Redis 存储验证码 1.2 使用 Redis 存储登录凭证 1.3 使用 Redis 缓存用户信息 1. 使用 Redis 优化登陆模块 使用 Redis 存储验证码&#xff1a;验证码需要频繁的访问与刷新&#xff0c;对性能要求较高&#xff1b;验证码不需要永…...

Nacos-NacosRule 负载均衡—设置集群使本地服务优先访问

userservice: ribbon: NFLoadBalancerRuleClassName: com.alibaba.cloud.nacos.ribbon.NacosRule # 负载均衡规则 NacosRule 权重计算方法 目录 一、介绍 二、示例&#xff08;案例截图&#xff09; 三、总结 一、介绍 NacosRule是AlibabaNacos自己实现的一个负载均衡策略&…...

软件设计师——信息安全(二)

&#x1f4d1;前言 本文主要是【信息安全】——软件设计师——信息安全的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是听风与他&#x1f947; ☁️博客首页&#xff1a;CSDN主页听风与他 &#x1f304…...

Unity中实现ShaderToy卡通火(原理实现篇)

文章目录 前言一、我们在片元着色器中&#xff0c;实现卡通火的大体框架1、使用 noise 和 _CUTOFF 判断作为显示火焰的区域2、_CUTOFF &#xff1a; 用于裁剪噪波范围的三角形3、noise getNoise(uv, t); : 噪波函数 二、顺着大体框架依次解析具体实现的功能1、 uv.x * 4.0; : …...

引迈信息-JNPF平台怎么样?值得入手吗?

目录 1.前言 2.引迈低代码怎么样&#xff1f; 3.平台亮点展示 4.引迈产品特点 5.引迈产品技术栈&#xff1a; 1.前言 低代码是近几年比较火的一种应用程序快速开发方式&#xff0c;它能帮助用户在开发软件的过程中大幅减少手工编码量&#xff0c;并通过可视化组件加速应用…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...