现代雷达车载应用——第2章 汽车雷达系统原理 2.6节 雷达设计考虑
经典著作,值得一读,英文原版下载链接【免费】ModernRadarforAutomotiveApplications资源-CSDN文库。
2.6 雷达设计考虑
上述部分给出了汽车雷达基本原理的简要概述。在雷达系统的设计中,有几个方面是必不可少的,它们决定了雷达系统的关键性能。在本节中,FMCW雷达将作为一个例子来讨论这些设计考虑。
2.6.1 灵敏度
雷达的灵敏度定义了在特定PFA和PD下可以成功探测到的来自目标的最弱回波。在以上章节中,我们分别介绍了信号模型和噪声模型。有了这些模型,雷达系统设计者将能够在发展的早期阶段预测雷达的灵敏度。
灵敏度的分析从雷达距离方程(2.21)开始。假设接收信道的总增益为Gs,其中包括放大器的增益、下变频混频器和基带放大器的损耗/增益。基带上的信号功率为
(2.101)
另一方面,由式(2.34)可知基带上的噪声功率为
(2.102)
因此,信噪比可以由下式获得
(2.103)
式中,Gsp为信号处理增益,Lsp为信号处理损耗。βn近似于ADC前抗混叠滤波器的BW。对于FMCW雷达来说,Gsp主要来自于“快时间”和“慢时间”的DFT。对距离-多普勒处理,信号处理总增益Gsp = N*M,其中N为“快时间”的DFT大小,M为“慢时间”的DFT大小,也分别称为距离和多普勒单元数。对于Lsp,其中一个原因是在DFT之前对数据加了窗函数。
对于汽车雷达的设计,通常针对具体情况提供要求。例如,某汽车制造商需要前视雷达来支持其自动紧急制动功能,这就要求雷达在一定范围内检测到行人,且检测概率大于50% (PD > 0.5),虚警率PFA = 1 * 10 -4。行人通常被认为是一个Swerling I的目标。从表2.6中可以看出,在没有积累的情况下,实现PD = 0.5和PFA = 1 * 10 -4的Swerling I目标的最小信噪比是SNRmin = 10.89 dB。因此,最大探测距离为
(2.104)
雷达设计人员的主要任务之一是在(2.105)中的参数之间找到一个良好的平衡。kT0是常数,λ是由工作频率决定的,它也可以看作是一个常数。发射功率P t和噪声系数NF通常由雷达收发芯片决定,通常受到制造工艺的限制。Gt和Gr依赖于天线设计,还需要考虑最大天线增益和波束覆盖(天线波束宽度)之间的权衡。βn、Gsp和Lsp是与雷达波形设计和数字信号处理相关的参数。利用积累可以降低最小信噪比,从而提高最大探测距离。然而,集成也需要更多的处理。
2.6.2 距离/多普勒覆盖
雷达的距离覆盖可以从(2.46)到(2.105)确定。由式(2.46)可知,当fp = fs,采用I/Q基带时,最大距离为:
(2.105)
这个最大范围是基于波形和采样率,而不考虑灵敏度。使用单通道基带(没有I/Q基带),最大范围减少了一半:
(2.106)
因此,雷达的实际距离覆盖应该为
(2.107)
或
(2.108)
对于单通道基带。
对于多普勒覆盖,最大速度可以从式(2.79)计算当,ξp=M
(2.109)
Vmax也被称为最大无模糊速度,因为Vmax之外的速度被折叠到(速度)区间中。
2.6.3 距离/多普勒分辨率
雷达的目标分辨率是它区分距离或多普勒非常近的目标的能力。对于FMCW雷达,目标的距离可以从(2.69)得到。距离分辨率ΔR是两个相邻距离单元之间的差:
(2.110)
(2.111)
由于N/fs=T0,距离分辨率可以推导为
(2.112)
类似距离分辨率,多普勒(速度)分辨率ΔV能从(2.79)获得:
(2.113)
(2.114)
值得注意的是,由式(2.112)和式(2.114)推导出的ΔR和ΔV是一种理想条件,包括相同大小、高信噪比、矩形窗口的点目标。在实际情况下,距离和多普勒分辨率会受到各种因素的影响。例如,如果目标的大小不同,则更难以区分较小的目标和较大的目标。另一个例子是,在距离-多普勒处理中可以使用某些窗函数来获得合理的副瓣电平,这通常会增加主瓣宽度,降低距离和多普勒分辨率[30]。
2.6.4 相位噪声
一个完美的正弦波只能在教科书中找到。相位和频率的不稳定性在所有天然和人造振荡器中都是允许的。这些不稳定性被称为相位噪声。相位噪声与材料、结构设计以及振荡器中的随机噪声现象有关。图2.28(a)显示了一个普通振荡器的频谱,其中f0为中心或载波频率。相位噪声的功率随着频偏fa的增大而减小。频谱的相位噪声部分可以分为两部分,即近载波相位噪声和远载波相位噪声。对于汽车雷达,通常使用锁相环来合成波形。图2.28(b)显示了锁相环的典型频谱。在图2.28(b)中可以看到一个基座,这是由于基于锁相环的合成器具有有限环路BW,或者由于系统中使用的倍频器链的有限BW用于倍频。参考文献[31-33]详细分析了噪声基座在倍频作用下的行为。

图2.28 雷达信号源频谱(a)一般振荡器的频谱(b)包括噪声基座的合成信号发生器的频谱
在雷达的接收信道中,混频器可以增加或消除接收信号中的相位噪声。相位噪声的消除发生在两个输入信号是相干的情况下,即两个输入信号之间具有确定的相位关系。在其他工作中,混频器的输入信号来自同一参考源。在汽车雷达系统中,混频器将发射信号与延时副本混合,产生如下相位噪声去相关[34,35]:
(2.115)
相位噪声去相关系数为
,如(2.115)所示。可以看出,当δt = 0时,相位噪声可以完全消除。随着δt的增大,
呈现周期性。
为了更好地说明相位噪声对汽车雷达的影响,采用雷达收发器的相位噪声实测数据进行仿真。图2.29是测量到的相位噪声。从图中可以清楚地看到相位噪声基座。仿真的距离分布图如图2.30和2.31所示,目标位置分别为80 m和150 m。距离分布是128个chirp的平均值,以获得噪声底的形状。如(2.115)所示,相位噪声在距离分布中引入肩带。肩带随着目标距离的增加而升高,而去相关度随着δt的增加而增加。在汽车雷达应用中,更高的肩带意味着更小的动态范围。在这种情况下,可能无法检测到大目标旁边的小目标。例如,汽车前面的行人可能会被相位噪声肩带掩盖。因此,雷达信号发生器必须具有低相位噪声才能保持足够的动态范围。

图2.29 雷达发射机测量到的相位噪声示例

图2.30 80m处目标的距离分布

图2.30 150m处目标的距离分布
2.6.5 Chirp非线性
汽车雷达测距的另一个主要干扰是chirp非线性。理想的FMCW雷达具有完美的线性chirp,可以表示为
f(t) = fc + Kt (2.116)
K是chirp的斜率。然而,实际信号合成器中总是存在频率偏差。图2.32显示了一个与理想线性chirp相比有轻微偏差的24 GHz chirp示例。

图2.32 一个非线性chirp
基带频率和目标距离精度取决于频率斜坡中非线性的类型。因此,chirp非线性带来的影响应该逐个评估。例如,文献[36]中描述了具有正弦偏差的非线性频率斜坡的影响。在文献[37]中,评估了FMCW雷达中自由运行的压控振荡器的平方偏差。由于难以解析地确定chirp非线性的影响,雷达设计人员通常将测量和仿真相结合来分析chirp非线性的影响。现代先进的信号和频谱分析仪器,如Keysight 89,601BHPC和罗德与施瓦茨FSW信号和频谱分析仪,提供了直接测量瞬时波形频率关系的能力。因此,雷达设计人员可以利用雷达仿真中测量到的波形来评估非线性所造成的影响。
对于图2.32中测量的波形,可以使用一般的连续波发射信号(2.13)从频率与时间的瞬态波形创建时域发射信号。根据感兴趣的距离,可以在(2.42)中应用一定的时间延迟来获得基带信号进行评估。仿真距离分布示例如图2.33所示,其中三个目标分别位于30、95和200 m处,RCS值不同。非线性的影响在图2.33中很明显,随着距离的增加,目标波束的宽度会变宽,这会降低距离识别和距离精度。信噪比在较长的距离也有更多的下降。因此,在汽车雷达设计中,有一个良好的线性chirp是至关重要的,以保持雷达的性能在整个距离覆盖。

图2.33 非线性chirp目标的距离分布
相关文章:
现代雷达车载应用——第2章 汽车雷达系统原理 2.6节 雷达设计考虑
经典著作,值得一读,英文原版下载链接【免费】ModernRadarforAutomotiveApplications资源-CSDN文库。 2.6 雷达设计考虑 上述部分给出了汽车雷达基本原理的简要概述。在雷达系统的设计中,有几个方面是必不可少的,它们决定了雷达系…...
【JVM从入门到实战】(五)类加载器
一、什么是类加载器 类加载器(ClassLoader)是Java虚拟机提供给应用程序去实现获取类和接口字节码数据的技术。 类加载器只参与加载过程中的字节码获取并加载到内存这一部分。 二、jdk8及之前的版本 类加载器分为三类: 启动类加载器-加载Ja…...
计算机毕业设计 基于Web的城市旅游网站的设计与实现 Java实战项目 附源码+文档+视频讲解
博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...
【人工智能革命】:AIGC时代的到来 | 探索AI生成内容的未来
🎥 屿小夏 : 个人主页 🔥个人专栏 : IT杂谈 🌄 莫道桑榆晚,为霞尚满天! 文章目录 📑前言一. AIGC 技术的概述和发展趋势1.1 AIGC 技术的概述1.2 AIGC 技术的发展趋势 二. AIGC 与元宇…...
spring-boot-data-jpa、JPA实现分页
spring-boot-data-jpa、JPA实现分页 JPA越来越丰富了,下面使用springboot3.x实现JPA分页 通过传入PageRequest pageRequest PageRequest.of(page, size);到接口查询,返回Page拿到分页数据。 转自 https://lingkang.top/archives/jpa-shi-xian-fen-ye …...
云原生之深入解析如何在Kubernetes中快速启用Cgroup V2支持
一、cgroup v2 有哪些优势? Linux 中有两个 cgroup 版本:cgroup v1 和 cgroup v2。cgroup v2 是新一代的 cgroup API。Kubernetes 自 v1.25 起 cgroup2 特性正式 stable。cgroup v2 提供了一个具有增强资源管理能力的统一控制系统,cgroup v2…...
QT实现四则运算计算器
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);this->setMaximumSize(240,300);this->setMinimumSize(240,300);this->setWindowTitle("计算器&…...
mysql的redolog、undo、binlog的作用
概览: MySQL三大日志包括:undolog,redo log,binlog,它们分别有以下作用: undolog:是Innodb存储引擎事务生成的日志。用于事务的回滚和MVCC,保证了事务的原子性。 redo log&#x…...
京东大数据-10月京东咖啡机市场销售数据分析-销售额增长41%,德龙等海外头部品牌店铺数据分析
如今,咖啡已经成为了人们日常生活中流行的生活饮品之一,消费量较大。随着咖啡的受众人群越来越多,消费者们对咖啡品质的要求也愈来愈高,而咖啡品质除了受咖啡豆质量影响外,还受制作过程中煮泡时间、水温和物料数量等因…...
【Android12】WindowManagerService架构分析
Android WindowManagerService架构分析 WindowManagerService(以下简称WMS) 是Android的核心服务。WMS管理所有应用程序窗口(Window)的Create、Display、Update、Destory。 因为Android系统中只有一个WMS(运行在SystemServer进程),可以称其为…...
部署LVS的NET模式
实验准备 #负载调度器# 192.168.116.40 #内网 12.0.0.100 #外网 先添加双网卡 #web服务器# 192.168.116.20 #web1 192.168.116.30 #web2 #nfs共享服务# 192.168.116.10 #nfs systemctl stop firewalld setenforce 0 1.nfs共享文件 1…...
如何在Facebook Business Manager进行企业认证
Facebook Business Manager,简称BM,按照字面意思理解就是Facebook官方的商务管理平台,是供广告主团队去使用的一个管理工具。BM可以绑定Facebook公共主页、广告账户等一系列Facebook账号。通过BM,企业就可以在一个后台,…...
推荐一款好用的包含表格识别的OCR网站
在当今数字化的时代,文字和表格识别已经成为了许多行业的关键技术。无论是处理大量的纸质文档,还是从网络上收集数据,OCR(光学字符识别)技术都扮演着重要的角色。然而,对于许多用户来说,OCR软件…...
linux 块设备驱动程序介绍
Linux块设备驱动是Linux操作系统中用于处理块设备的设备驱动程序。块设备是指以固定大小的块单位进行访问的存储设备,例如硬盘、固态硬盘和USB存储设备等。 Linux块设备驱动负责管理块设备的读写操作,并将数据传输到相应的存储设备上。它还负责处理块设…...
知识付费小程序开发:构建个性化学习平台的技术实践
随着在线学习和知识付费的兴起,开发一款知识付费小程序成为了创新的热点之一。本文将通过使用Node.js、Express和MongoDB为例,演示如何构建一个基础的知识付费小程序后端,并实现用户认证和知识内容管理。 1. 初始化项目 首先,确…...
OpenCV极坐标变换函数warpPolar的使用
学更好的别人, 做更好的自己。 ——《微卡智享》 本文长度为1702字,预计阅读4分钟 前言 前阵子在做方案时,得了几张骨钉的图片,骨科耗材批号效期管理一直是比较麻烦的,贴RFID标签成本太高,所以一般考虑还是…...
类与接口常见面试题
抽象类和接口的对比 抽象类是用来捕捉子类的通用特性的。接口是抽象方法的集合。 从设计层面来说,抽象类是对类的抽象,是一种模板设计,接口是行为的抽象,是一种行为的规范。 相同点 接口和抽象类都不能实例化都位于继承的顶端…...
Windows mysql5.7 执行查询/开启/测试binlog---简易记录
前言:基于虚拟机mysql版本为5.7,增量备份测试那就要用到binlog… 简述:二进制日志(binnary log)以事件形式记录了对MySQL数据库执行更改的所有操作。 binlog是记录所有数据库表结构变更(例如CREATE、ALTER…...
文档安全加固:零容忍盗窃,如何有效预防重要信息外泄
文档安全保护不仅需要从源头着手,杜绝文档在使用和传播过程中产生的泄密风险,同时还需要对文档内容本身进行有效的保护。为了防范通过拷贝、截屏、拍照等手段盗窃重要文档内容信息的风险,迅软DSE加密软件提供了文档加密保护功能,能…...
前端如何设置模板参数
1.背景: 最近接到一个需求,在一个类似chatGpt的聊天工具中,要在对话框中设置模板,后端提供了很多模板参数,然后要求将后端返回的特殊字符转成按钮,编辑完成后在相应的位置拼接成字符串。 2.效果:…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
