【深度学习目标检测】四、基于深度学习的抽烟识别(python,yolov8)
YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。
YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。
YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。
在YOLOv8中,还使用了一些技术来提高检测性能。首先是使用了多尺度检测。YOLOv8在不同的尺度上检测物体,这样可以更好地处理物体的大小变化和远近距离差异。其次是利用了FPN(Feature Pyramid Network)结构来提取多尺度特征。FPN可以将不同层级的特征图进行融合,使得算法对不同大小的物体都有较好的适应性。
此外,YOLOv8还利用了一种称为CSPDarknet的网络结构来减少计算量。CSPDarknet使用了CSP(Cross Stage Partial)结构,在网络的前向和后向传播过程中进行特征融合,从而减少了网络的参数量和计算量。
在训练阶段,YOLOv8使用了一种称为CutMix的数据增强技术。CutMix将不同图像的一部分进行混合,从而增加了数据的多样性和鲁棒性。
总而言之,YOLOv8是一种快速而准确的物体检测算法,它通过引入Darknet-53网络、多尺度检测、FPN结构、CSPDarknet结构和CutMix数据增强等技术,实现了对不同大小和距离的物体进行快速、准确的检测。
本文介绍了基于Yolov8的抽烟检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。
效果如下图:

一、安装YoloV8
yolov8官方文档:https://docs.ultralytics.com/zh/
安装部分参考:官方安装教程
二、数据集准备
抽烟数据集共包含705个训练图片,78个验证图片,图片示例如下:


原始的数据格式为VOC格式,本文提供转换好的yolov8格式数据集,,可以直接放入yolov8中训练,数据集地址:抽烟数据集yolov8格式
三、修改yolov8配置文件
1、修改数据集配置文件
将path替换成自己的数据集路径:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/smoke/pp_smoke-yolov8 # 更改为自己的数据集路径,建议绝对路ing
train: images/train
val: images/val
test: images/val # Classes
names:0: smoke
2、配置模型文件
模型配置文件如下,将nc改成1:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
3、训练模型
使用如下命令开始训练(将相关路径改成自己的路径,建议改成绝对路径):
yolo detect train project=deploy name=yolov8_smoke exist_ok=True optimizer=auto val=True amp=True epochs=100 imgsz=640 model=ultralytics/ultralytics/cfg/models/v8/yolov8_smoke.yaml data=ultralytics/ultralytics/cfg/datasets/smoke.yaml
4、评估模型
使用如下命令评估:
yolo detect val imgsz=640 model=deploy/yolov8_smoke/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/smoke.yaml
精度如下:

5、推理
推理代码如下:
from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')# 在'bus.jpg'上运行推理
image_path = 'smoke_a205.jpg'
results = model(image_path) # 结果列表# 展示结果
for r in results:im_array = r.plot() # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1]) # RGB PIL图像im.show() # 显示图像im.save('results.jpg') # 保存图像
四、相关资料
本文在训练好的模型和推理代码:推理代码和权重
相关文章:
【深度学习目标检测】四、基于深度学习的抽烟识别(python,yolov8)
YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。 YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。…...
YML学习
讲解YML使用场景、语法和解析 1.基础知识1.1 什么是YML1.2 YML优点1.3 YML使用场景 2.YML语法2.1 基础语法2.2 字面量数据类型2.2.1 字符串2.2.2 NULL2.4.5 时间戳(timestamp) 2.3 对象\MAP类型2.4 数组/List/Set2.4.1 值为基础类型2.4.2 值为对象2.4.3 …...
华为HCIP认证H12-821题库下
26、6.交换技术核心知识 (单选题)某交换机运行RSTP协议,其相关配置信息如图所示,请根据命令配置情况指出对于Instance 1,该交换机的角色是: A、根交换机 B、非根交换机 C、交换机 D、无法判断 正确答案是&…...
01--二分查找
一. 初识算法 1.1 什么是算法? 在数学和计算机科学领域,算法是一系列有限的严谨指令,通常用于解决一类特定问题或执行计算 不正式的说,算法就是任何定义优良的计算过程:接收一些值作为输入,在有限的时间…...
初识大数据应用,一文掌握大数据知识文集(1)
文章目录 🏆初识大数据应用知识🔎一、初识大数据应用知识(1)🍁 01、请用Java实现非递归二分查询?🍁 02、是客户端还是Namenode决定输入的分片?🍁 03、mapred.job.tracker命令的作用?…...
Kafka生产问题总结及性能优化实践
1、消息丢失情况 消息发送端: (1)acks0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。大数据统计报表场景,对性能要求很高&am…...
[MySQL]数据库原理2,Server,DataBase,Connection,latin1、UTF-8,gb2312,Encoding,Default Collation——喵喵期末不挂科
希望你开心,希望你健康,希望你幸福,希望你点赞! 最后的最后,关注喵,关注喵,关注喵,佬佬会看到更多有趣的博客哦!!! 喵喵喵,你对我真的…...
【算法集训】基础数据结构:十、矩阵
矩阵其实就是二维数组,这些题目在9日集训中已经做过,这里做的方法大致相同。 第一题 1351. 统计有序矩阵中的负数 int countNegatives(int** grid, int gridSize, int* gridColSize) {int r gridSize;int c gridColSize[0];int ret 0;for(int i 0;…...
python排序算法 直接插入排序法和折半插入排序法
最近需要使用到一些排序算法,今天主要使针对直接插入排序和折半插入排序进行讲解。 首先是直接插入排序,其排序过程主要是,针对A[a1,a2,a3,a4,a5....an],从排序的序列头部起始位置开始,将其也就是a1视为只有一个元素的…...
【flutter对抗】blutter使用+ACTF习题
最新的能很好反编译flutter程序的项目 1、安装 git clone https://github.com/worawit/blutter --depth1 然后我直接将对应的两个压缩包下载下来(通过浏览器手动下载) 不再通过python的代码来下载,之前一直卡在这个地方。 如果读者可以正…...
OpenHarmony 如何去除系统锁屏应用
前言 OpenHarmony源码版本:4.0release / 3.2 release 开发板:DAYU / rk3568 一、3.2版本去除锁屏应用 在源码根目录下:productdefine/common/inherit/rich.json 中删除screenlock_mgr组件的编译配置,在rich.json文件中搜索th…...
Python - 搭建 Flask 服务实现图像、视频修复需求
目录 一.引言 二.服务构建 1.主函数 upload_gif 2.文件接收 3.专属目录 4.图像修复 5.gif2mp4 6.mp42gif 7.图像返回 三.服务测试 1.服务启动 2.服务调用 四.总结 一.引言 前面我们介绍了如何使用 Real-ESRGAN 进行图像增强并在原始格式 jpeg、jpg、mp4 的基础上…...
C#基础——构造函数、析构函数
C#基础——构造函数、析构函数 1、构造函数 构造函数是一种特殊的方法,用于在创建类的实例时进行初始化操作。构造函数与类同名,并且没有返回类型。 构造函数在对象创建时自动调用,可以用来设置对象的初始状态、分配内存、初始化字段等操作…...
jmeter 如何循环使用接口返回的多值?
有同学在用jmeter做接口测试的时候,经常会遇到这样一种情况: 就是一个接口请求返回了多个值,然后下一个接口想循环使用前一个接口的返回值。 这种要怎么做呢? 有一定基础的人,可能第一反应就是先提取前一个接口返回…...
VLAN 详解一(VLAN 基本原理及 VLAN 划分原则)
VLAN 详解一(VLAN 基本原理及 VLAN 划分原则) 在早期的交换网络中,网络中只有 PC、终端和交换机,当某台主机发送一个广播帧或未知单播帧时,该数据帧会被泛洪,甚至传递到整个广播域。而广播域越大ÿ…...
Android - 分区存储 MediaStore、SAF
官方页面 参考文章 一、概念 分区存储(Scoped Storage)的推出是针对 APP 访问外部存储的行为(乱建乱获取文件和文件夹)进行规范和限制,以减少混乱使得用户能更好的控制自己的文件。 公有目录被分为两大类:…...
Shiro框架权限控制
首先去通过配置类的用户认证,在用户认证完成后,进行用户授权,用户通过授权之后再跳转其他的界面时,会进行一个验证,当前账号是否有权限。 前端权限控制显示的原理 在前端中,通常使用用户的角色或权限信息来…...
centOS7 安装tailscale并启用子网路由
1、在centOS7上安装Tailscale客户端 #安装命令所在官网位置:https://tailscale.com/download/linux #具体命令为: curl -fsSL https://tailscale.com/install.sh | sh #命令执行后如下图所示2、设置允许IP转发和IP伪装。 安装后,您可以启动…...
spring 项目中如何处理跨越cors问题
1.使用 CrossOrigin 注解 作用于controller 方法上 示例如下 RestController RequestMapping("/account") public class AccountController {CrossOriginGetMapping("/{id}")public Account retrieve(PathVariable Long id) {// ...}DeleteMapping(&quo…...
importlib --- import 的实现
3.1 新版功能. 源代码 Lib/importlib/__init__.py 概述 importlib 包具有三重目标。 一是在 Python 源代码中提供 import 语句的实现(并且因此而扩展 __import__() 函数)。 这提供了一个可移植到任何 Python 解释器的 import 实现。 与使用 Python 以…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
Xcode 16 集成 cocoapods 报错
基于 Xcode 16 新建工程项目,集成 cocoapods 执行 pod init 报错 ### Error RuntimeError - PBXGroup attempted to initialize an object with unknown ISA PBXFileSystemSynchronizedRootGroup from attributes: {"isa">"PBXFileSystemSynchro…...
GAN模式奔溃的探讨论文综述(一)
简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...
简单介绍C++中 string与wstring
在C中,string和wstring是两种用于处理不同字符编码的字符串类型,分别基于char和wchar_t字符类型。以下是它们的详细说明和对比: 1. 基础定义 string 类型:std::string 字符类型:char(通常为8位)…...
