【深度学习目标检测】四、基于深度学习的抽烟识别(python,yolov8)
YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。
YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。
YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。
在YOLOv8中,还使用了一些技术来提高检测性能。首先是使用了多尺度检测。YOLOv8在不同的尺度上检测物体,这样可以更好地处理物体的大小变化和远近距离差异。其次是利用了FPN(Feature Pyramid Network)结构来提取多尺度特征。FPN可以将不同层级的特征图进行融合,使得算法对不同大小的物体都有较好的适应性。
此外,YOLOv8还利用了一种称为CSPDarknet的网络结构来减少计算量。CSPDarknet使用了CSP(Cross Stage Partial)结构,在网络的前向和后向传播过程中进行特征融合,从而减少了网络的参数量和计算量。
在训练阶段,YOLOv8使用了一种称为CutMix的数据增强技术。CutMix将不同图像的一部分进行混合,从而增加了数据的多样性和鲁棒性。
总而言之,YOLOv8是一种快速而准确的物体检测算法,它通过引入Darknet-53网络、多尺度检测、FPN结构、CSPDarknet结构和CutMix数据增强等技术,实现了对不同大小和距离的物体进行快速、准确的检测。
本文介绍了基于Yolov8的抽烟检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。
效果如下图:

一、安装YoloV8
yolov8官方文档:https://docs.ultralytics.com/zh/
安装部分参考:官方安装教程
二、数据集准备
抽烟数据集共包含705个训练图片,78个验证图片,图片示例如下:


原始的数据格式为VOC格式,本文提供转换好的yolov8格式数据集,,可以直接放入yolov8中训练,数据集地址:抽烟数据集yolov8格式
三、修改yolov8配置文件
1、修改数据集配置文件
将path替换成自己的数据集路径:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/smoke/pp_smoke-yolov8 # 更改为自己的数据集路径,建议绝对路ing
train: images/train
val: images/val
test: images/val # Classes
names:0: smoke
2、配置模型文件
模型配置文件如下,将nc改成1:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
3、训练模型
使用如下命令开始训练(将相关路径改成自己的路径,建议改成绝对路径):
yolo detect train project=deploy name=yolov8_smoke exist_ok=True optimizer=auto val=True amp=True epochs=100 imgsz=640 model=ultralytics/ultralytics/cfg/models/v8/yolov8_smoke.yaml data=ultralytics/ultralytics/cfg/datasets/smoke.yaml
4、评估模型
使用如下命令评估:
yolo detect val imgsz=640 model=deploy/yolov8_smoke/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/smoke.yaml
精度如下:

5、推理
推理代码如下:
from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')# 在'bus.jpg'上运行推理
image_path = 'smoke_a205.jpg'
results = model(image_path) # 结果列表# 展示结果
for r in results:im_array = r.plot() # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1]) # RGB PIL图像im.show() # 显示图像im.save('results.jpg') # 保存图像
四、相关资料
本文在训练好的模型和推理代码:推理代码和权重
相关文章:
【深度学习目标检测】四、基于深度学习的抽烟识别(python,yolov8)
YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。 YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。…...
YML学习
讲解YML使用场景、语法和解析 1.基础知识1.1 什么是YML1.2 YML优点1.3 YML使用场景 2.YML语法2.1 基础语法2.2 字面量数据类型2.2.1 字符串2.2.2 NULL2.4.5 时间戳(timestamp) 2.3 对象\MAP类型2.4 数组/List/Set2.4.1 值为基础类型2.4.2 值为对象2.4.3 …...
华为HCIP认证H12-821题库下
26、6.交换技术核心知识 (单选题)某交换机运行RSTP协议,其相关配置信息如图所示,请根据命令配置情况指出对于Instance 1,该交换机的角色是: A、根交换机 B、非根交换机 C、交换机 D、无法判断 正确答案是&…...
01--二分查找
一. 初识算法 1.1 什么是算法? 在数学和计算机科学领域,算法是一系列有限的严谨指令,通常用于解决一类特定问题或执行计算 不正式的说,算法就是任何定义优良的计算过程:接收一些值作为输入,在有限的时间…...
初识大数据应用,一文掌握大数据知识文集(1)
文章目录 🏆初识大数据应用知识🔎一、初识大数据应用知识(1)🍁 01、请用Java实现非递归二分查询?🍁 02、是客户端还是Namenode决定输入的分片?🍁 03、mapred.job.tracker命令的作用?…...
Kafka生产问题总结及性能优化实践
1、消息丢失情况 消息发送端: (1)acks0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。大数据统计报表场景,对性能要求很高&am…...
[MySQL]数据库原理2,Server,DataBase,Connection,latin1、UTF-8,gb2312,Encoding,Default Collation——喵喵期末不挂科
希望你开心,希望你健康,希望你幸福,希望你点赞! 最后的最后,关注喵,关注喵,关注喵,佬佬会看到更多有趣的博客哦!!! 喵喵喵,你对我真的…...
【算法集训】基础数据结构:十、矩阵
矩阵其实就是二维数组,这些题目在9日集训中已经做过,这里做的方法大致相同。 第一题 1351. 统计有序矩阵中的负数 int countNegatives(int** grid, int gridSize, int* gridColSize) {int r gridSize;int c gridColSize[0];int ret 0;for(int i 0;…...
python排序算法 直接插入排序法和折半插入排序法
最近需要使用到一些排序算法,今天主要使针对直接插入排序和折半插入排序进行讲解。 首先是直接插入排序,其排序过程主要是,针对A[a1,a2,a3,a4,a5....an],从排序的序列头部起始位置开始,将其也就是a1视为只有一个元素的…...
【flutter对抗】blutter使用+ACTF习题
最新的能很好反编译flutter程序的项目 1、安装 git clone https://github.com/worawit/blutter --depth1 然后我直接将对应的两个压缩包下载下来(通过浏览器手动下载) 不再通过python的代码来下载,之前一直卡在这个地方。 如果读者可以正…...
OpenHarmony 如何去除系统锁屏应用
前言 OpenHarmony源码版本:4.0release / 3.2 release 开发板:DAYU / rk3568 一、3.2版本去除锁屏应用 在源码根目录下:productdefine/common/inherit/rich.json 中删除screenlock_mgr组件的编译配置,在rich.json文件中搜索th…...
Python - 搭建 Flask 服务实现图像、视频修复需求
目录 一.引言 二.服务构建 1.主函数 upload_gif 2.文件接收 3.专属目录 4.图像修复 5.gif2mp4 6.mp42gif 7.图像返回 三.服务测试 1.服务启动 2.服务调用 四.总结 一.引言 前面我们介绍了如何使用 Real-ESRGAN 进行图像增强并在原始格式 jpeg、jpg、mp4 的基础上…...
C#基础——构造函数、析构函数
C#基础——构造函数、析构函数 1、构造函数 构造函数是一种特殊的方法,用于在创建类的实例时进行初始化操作。构造函数与类同名,并且没有返回类型。 构造函数在对象创建时自动调用,可以用来设置对象的初始状态、分配内存、初始化字段等操作…...
jmeter 如何循环使用接口返回的多值?
有同学在用jmeter做接口测试的时候,经常会遇到这样一种情况: 就是一个接口请求返回了多个值,然后下一个接口想循环使用前一个接口的返回值。 这种要怎么做呢? 有一定基础的人,可能第一反应就是先提取前一个接口返回…...
VLAN 详解一(VLAN 基本原理及 VLAN 划分原则)
VLAN 详解一(VLAN 基本原理及 VLAN 划分原则) 在早期的交换网络中,网络中只有 PC、终端和交换机,当某台主机发送一个广播帧或未知单播帧时,该数据帧会被泛洪,甚至传递到整个广播域。而广播域越大ÿ…...
Android - 分区存储 MediaStore、SAF
官方页面 参考文章 一、概念 分区存储(Scoped Storage)的推出是针对 APP 访问外部存储的行为(乱建乱获取文件和文件夹)进行规范和限制,以减少混乱使得用户能更好的控制自己的文件。 公有目录被分为两大类:…...
Shiro框架权限控制
首先去通过配置类的用户认证,在用户认证完成后,进行用户授权,用户通过授权之后再跳转其他的界面时,会进行一个验证,当前账号是否有权限。 前端权限控制显示的原理 在前端中,通常使用用户的角色或权限信息来…...
centOS7 安装tailscale并启用子网路由
1、在centOS7上安装Tailscale客户端 #安装命令所在官网位置:https://tailscale.com/download/linux #具体命令为: curl -fsSL https://tailscale.com/install.sh | sh #命令执行后如下图所示2、设置允许IP转发和IP伪装。 安装后,您可以启动…...
spring 项目中如何处理跨越cors问题
1.使用 CrossOrigin 注解 作用于controller 方法上 示例如下 RestController RequestMapping("/account") public class AccountController {CrossOriginGetMapping("/{id}")public Account retrieve(PathVariable Long id) {// ...}DeleteMapping(&quo…...
importlib --- import 的实现
3.1 新版功能. 源代码 Lib/importlib/__init__.py 概述 importlib 包具有三重目标。 一是在 Python 源代码中提供 import 语句的实现(并且因此而扩展 __import__() 函数)。 这提供了一个可移植到任何 Python 解释器的 import 实现。 与使用 Python 以…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
