Flink系列之:窗口关联
Flink系列之:窗口关联
- 一、窗口关联
- 二、INNER/LEFT/RIGHT/FULL OUTER
- 三、SEMI
- 四、ANTI
- 五、限制
一、窗口关联
- 适用于流、批
- 窗口关联就是增加时间维度到关联条件中。在此过程中,窗口关联将两个流中在同一窗口且符合 join 条件的元素 join 起来。窗口关联的语义和 DataStream window join 相同。
- 在流式查询中,与其他连续表上的关联不同,窗口关联不产生中间结果,只在窗口结束产生一个最终的结果。另外,窗口关联会清除不需要的中间状态。
- 通常,窗口关联和 窗口表值函数 一起使用。而且,窗口关联可以在其他基于 窗口表值函数 的操作后使用,例如 窗口聚合,窗口 Top-N 和 窗口关联。
- 目前,窗口关联需要在 join on 条件中包含两个输入表的 window_start 等值条件和 window_end 等值条件。
- 窗口关联支持 INNER/LEFT/RIGHT/FULL OUTER/ANTI/SEMI JOIN。
二、INNER/LEFT/RIGHT/FULL OUTER
下面展示了 INNER/LEFT/RIGHT/FULL OUTER 窗口关联的语法:
SELECT ...
FROM L [LEFT|RIGHT|FULL OUTER] JOIN R -- L 和 R 是应用加窗 TVF 的关系
ON L.window_start = R.window_start AND L.window_end = R.window_end AND ...
INNER/LEFT/RIGHT/FULL OUTER 这几种窗口关联的语法非常相似,我们在这里只举一个 FULL OUTER JOIN 的例子。 当执行窗口关联时,所有具有相同 key 和相同滚动窗口的数据会被关联在一起。这里给出一个基于 TUMBLE Window TVF 的窗口连接的例子。 在下面的例子中,通过将 join 的时间区域限定为固定的 5 分钟,数据集被分成两个不同的时间窗口:[12:00,12:05) 和 [12:05,12:10)。L2 和 R2 不能 join 在一起是因为它们不在一个窗口中。
Flink SQL> desc LeftTable;
+----------+------------------------+------+-----+--------+----------------------------------+
| name | type | null | key | extras | watermark |
+----------+------------------------+------+-----+--------+----------------------------------+
| row_time | TIMESTAMP(3) *ROWTIME* | true | | | `row_time` - INTERVAL '1' SECOND |
| num | INT | true | | | |
| id | STRING | true | | | |
+----------+------------------------+------+-----+--------+----------------------------------+Flink SQL> SELECT * FROM LeftTable;
+------------------+-----+----+
| row_time | num | id |
+------------------+-----+----+
| 2020-04-15 12:02 | 1 | L1 |
| 2020-04-15 12:06 | 2 | L2 |
| 2020-04-15 12:03 | 3 | L3 |
+------------------+-----+----+Flink SQL> desc RightTable;
+----------+------------------------+------+-----+--------+----------------------------------+
| name | type | null | key | extras | watermark |
+----------+------------------------+------+-----+--------+----------------------------------+
| row_time | TIMESTAMP(3) *ROWTIME* | true | | | `row_time` - INTERVAL '1' SECOND |
| num | INT | true | | | |
| id | STRING | true | | | |
+----------+------------------------+------+-----+--------+----------------------------------+Flink SQL> SELECT * FROM RightTable;
+------------------+-----+----+
| row_time | num | id |
+------------------+-----+----+
| 2020-04-15 12:01 | 2 | R2 |
| 2020-04-15 12:04 | 3 | R3 |
| 2020-04-15 12:05 | 4 | R4 |
+------------------+-----+----+Flink SQL> SELECT L.num as L_Num, L.id as L_Id, R.num as R_Num, R.id as R_Id,COALESCE(L.window_start, R.window_start) as window_start,COALESCE(L.window_end, R.window_end) as window_endFROM (SELECT * FROM TABLE(TUMBLE(TABLE LeftTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))) LFULL JOIN (SELECT * FROM TABLE(TUMBLE(TABLE RightTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))) RON L.num = R.num AND L.window_start = R.window_start AND L.window_end = R.window_end;
+-------+------+-------+------+------------------+------------------+
| L_Num | L_Id | R_Num | R_Id | window_start | window_end |
+-------+------+-------+------+------------------+------------------+
| 1 | L1 | null | null | 2020-04-15 12:00 | 2020-04-15 12:05 |
| null | null | 2 | R2 | 2020-04-15 12:00 | 2020-04-15 12:05 |
| 3 | L3 | 3 | R3 | 2020-04-15 12:00 | 2020-04-15 12:05 |
| 2 | L2 | null | null | 2020-04-15 12:05 | 2020-04-15 12:10 |
| null | null | 4 | R4 | 2020-04-15 12:05 | 2020-04-15 12:10 |
+-------+------+-------+------+------------------+------------------+
注意:为了更好地理解窗口行为,这里把 timestamp 值后面的 0 去掉了。例如:在 Flink SQL Client 中,如果类型是 TIMESTAMP(3),2020-04-15 08:05 应该显示成 2020-04-15 08:05:00.000。
这个SQL查询的目标是使用左外连接将LeftTable和RightTable两个表按照row_time进行分区,并在每个分区内进行关联操作。
- 首先,通过SELECT子句选择了LeftTable和RightTable中的一些列,并使用COALESCE函数将两个表的window_start和window_end列合并为一个结果列。
- 接下来,在FROM子句中使用TUMBLE函数对LeftTable和RightTable进行分区,每个分区的时间窗口大小为5分钟,并指定了row_time作为分区依据。
- 然后,使用FULL JOIN关键字将左侧分区的结果表L与右侧分区的结果表R进行连接。连接条件是L.num = R.num并且L.window_start = R.window_start并且L.window_end = R.window_end。
- 最后,查询结果将返回LeftTable和RightTable关联后的结果,其中包括L.num、L.id、R.num、R.id以及合并后的window_start和window_end列。如果在连接操作中未找到匹配的行,则相应的列将返回NULL值。
三、SEMI
如果在同一个窗口中,左侧记录在右侧至少有一个匹配的记录时,半窗口连接(Semi Window Join)就会输出左侧的记录。
Flink SQL> SELECT *FROM (SELECT * FROM TABLE(TUMBLE(TABLE LeftTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))) L WHERE L.num IN (SELECT num FROM ( SELECT * FROM TABLE(TUMBLE(TABLE RightTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))) R WHERE L.window_start = R.window_start AND L.window_end = R.window_end);
+------------------+-----+----+------------------+------------------+-------------------------+
| row_time | num | id | window_start | window_end | window_time |
+------------------+-----+----+------------------+------------------+-------------------------+
| 2020-04-15 12:03 | 3 | L3 | 2020-04-15 12:00 | 2020-04-15 12:05 | 2020-04-15 12:04:59.999 |
+------------------+-----+----+------------------+------------------+-------------------------+Flink SQL> SELECT *FROM (SELECT * FROM TABLE(TUMBLE(TABLE LeftTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))) L WHERE EXISTS (SELECT * FROM (SELECT * FROM TABLE(TUMBLE(TABLE RightTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))) R WHERE L.num = R.num AND L.window_start = R.window_start AND L.window_end = R.window_end);
+------------------+-----+----+------------------+------------------+-------------------------+
| row_time | num | id | window_start | window_end | window_time |
+------------------+-----+----+------------------+------------------+-------------------------+
| 2020-04-15 12:03 | 3 | L3 | 2020-04-15 12:00 | 2020-04-15 12:05 | 2020-04-15 12:04:59.999 |
+------------------+-----+----+------------------+------------------+-------------------------+
注意:为了更好地理解窗口行为,这里把 timestamp 值后面的 0 去掉了。例如:在 Flink SQL Client 中,如果类型是 TIMESTAMP(3),2020-04-15 08:05 应该显示成 2020-04-15 08:05:00.000。
这条SQL查询的目标是在两个表LeftTable和RightTable中,根据row_time进行分区,并找出满足条件的行。
- 首先,在FROM子句中,使用TUMBLE函数对LeftTable进行分区,每个分区的时间窗口大小为5分钟,并指定row_time作为分区依据。然后,将其结果作为内部查询的输入表,命名为L。
- 接下来,使用WHERE子句在L的结果中筛选出满足条件的行。条件是L.num要存在于右侧分区结果表R中的num列中。
- 在内部查询中,使用TUMBLE函数对RightTable进行分区,每个分区的时间窗口大小也为5分钟,并指定row_time作为分区依据。然后,将其结果作为内部查询的输入表,命名为R。
- 最后,在R的结果中,使用WHERE子句将满足L.window_start = R.window_start和L.window_end = R.window_end的行选出。
- 最终的查询结果将返回满足条件的行,包括LeftTable和RightTable中的所有列。
四、ANTI
反窗口连接(Anti Window Join)是内窗口连接(Inner Window Join)的相反操作:它包含了每个公共窗口内所有未关联上的行。
Flink SQL> SELECT *FROM (SELECT * FROM TABLE(TUMBLE(TABLE LeftTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))) L WHERE L.num NOT IN (SELECT num FROM ( SELECT * FROM TABLE(TUMBLE(TABLE RightTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))) R WHERE L.window_start = R.window_start AND L.window_end = R.window_end);
+------------------+-----+----+------------------+------------------+-------------------------+
| row_time | num | id | window_start | window_end | window_time |
+------------------+-----+----+------------------+------------------+-------------------------+
| 2020-04-15 12:02 | 1 | L1 | 2020-04-15 12:00 | 2020-04-15 12:05 | 2020-04-15 12:04:59.999 |
| 2020-04-15 12:06 | 2 | L2 | 2020-04-15 12:05 | 2020-04-15 12:10 | 2020-04-15 12:09:59.999 |
+------------------+-----+----+------------------+------------------+-------------------------+Flink SQL> SELECT *FROM (SELECT * FROM TABLE(TUMBLE(TABLE LeftTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))) L WHERE NOT EXISTS (SELECT * FROM (SELECT * FROM TABLE(TUMBLE(TABLE RightTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))) R WHERE L.num = R.num AND L.window_start = R.window_start AND L.window_end = R.window_end);
+------------------+-----+----+------------------+------------------+-------------------------+
| row_time | num | id | window_start | window_end | window_time |
+------------------+-----+----+------------------+------------------+-------------------------+
| 2020-04-15 12:02 | 1 | L1 | 2020-04-15 12:00 | 2020-04-15 12:05 | 2020-04-15 12:04:59.999 |
| 2020-04-15 12:06 | 2 | L2 | 2020-04-15 12:05 | 2020-04-15 12:10 | 2020-04-15 12:09:59.999 |
+------------------+-----+----+------------------+------------------+-------------------------+
注意:为了更好地理解窗口行为,这里把 timestamp 值后面的 0 去掉了。例如:在 Flink SQL Client 中,如果类型是 TIMESTAMP(3),2020-04-15 08:05 应该显示成 2020-04-15 08:05:00.000。
五、限制
Join 子句的限制
- 目前,窗口关联需要在 join on 条件中包含两个输入表的 window_start 等值条件和 window_end 等值条件。未来,如果是滚动或滑动窗口,只需要在 join on 条件中包含窗口开始相等即可。
输入的窗口表值函数的限制
- 目前,关联的左右两边必须使用相同的窗口表值函数。这个规则在未来可以扩展,比如:滚动和滑动窗口在窗口大小相同的情况下 join。
窗口表值函数之后直接使用窗口关联的限制
- 目前窗口关联支持作用在滚动(TUMBLE)、滑动(HOP)和累积(CUMULATE)窗口表值函数 之上,但是还不支持会话窗口(SESSION)。
相关文章:
Flink系列之:窗口关联
Flink系列之:窗口关联 一、窗口关联二、INNER/LEFT/RIGHT/FULL OUTER三、SEMI四、ANTI五、限制 一、窗口关联 适用于流、批窗口关联就是增加时间维度到关联条件中。在此过程中,窗口关联将两个流中在同一窗口且符合 join 条件的元素 join 起来。窗口关联…...
Eolink 两项产品入选 2023 年广东省名优高新技术产品名录!
近日,2023 年广东省名优高新技术产品正式名单已经发布,Eolink 旗下两项产品荣幸入选! “广东省名优高新技术产品”是广东省对高新技术产品领域的升级和优化的重要措施。名优产品的评选不仅强调了技术的先进性,更对产品的质量、市…...
054:vue工具 --- BASE64加密解密互相转换
第054个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使…...
自动驾驶学习笔记(二十)——Planning算法
#Apollo开发者# 学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往: 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo 社区开发者圆桌会》免费报名—>传送门 文章目录 前言 参考线平滑 双层状态机 EM Planner …...
adb的使用
Adb windows 环境搭建 (1)将adb包安装或者解压到一个路径,并拿到adb.exe所在的路径值,例如,D:\Tools\adb (2)将路径值放进windows环境变量 我的电脑(此电脑图标)右键–》 选择“属…...
会旋转的树,你见过吗?
🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻强烈推荐优质专栏: 🍔🍟🌯C的世界(持续更新中) 🐻推荐专栏1: 🍔🍟🌯C语言初阶 🐻推荐专栏2: 🍔…...
Azure Machine Learning - 提示工程简介
OpenAI的GPT-3、GPT-3.5和GPT-4模型基于用户输入的文本提示工作。有效的提示构造是使用这些模型的关键技能,涉及到配置模型权重以执行特定任务。这不仅是技术操作,更像是一种艺术,需要经验和直觉。本文旨在介绍适用于所有GPT模型的提示概念和…...
服务器的安全包括哪些方面?服务器安全该如何去加固处理?
服务器安全包括如下几个方面: 系统安全:包括操作系统的安全性、系统的漏洞和补丁管理、用户管理、文件权限和访问控制等。 网络安全:包括网络拓扑结构、网络设备的安全性、网络协议的安全性、防火墙和入侵检测等。 数据安全:包括数…...
为什么在Android中需要Context?
介绍 在Android开发中,Context是一个非常重要的概念,但是很多开发者可能并不清楚它的真正含义以及为什么需要使用它。本文将详细介绍Context的概念,并解释为什么在Android应用中需要使用它。 Context的来源 Context的概念来源于Android框架…...
AIGC实战——条件生成对抗网络(Conditional Generative Adversarial Net, CGAN)
AIGC实战——条件生成对抗网络 0. 前言1. CGAN架构2. 模型训练3. CGAN 分析小结系列链接 0. 前言 我们已经学习了如何构建生成对抗网络 (Generative Adversarial Net, GAN) 以从给定的训练集中生成逼真图像。但是,我们无法控制想要生成的图像类型,例如控…...
高性能计算HPC与统一存储
高性能计算(HPC)广泛应用于处理大量数据的复杂计算,提供更精确高效的计算结果,在石油勘探、基因分析、气象预测等领域,是企业科研机构进行研发的有效手段。为了分析复杂和大量的数据,存储方案需要响应更快&…...
秋招上岸记录咕咕咕了。
思考了一下,感觉并没有单独写这样一篇博客的必要。 能够写出来的,一些可能会对人有帮助的东西都做进了视频里面,未来会在blbl发布,目前剪辑正在施工中(?) 另外就是,那个视频里面使…...
vue模板语法
一、插值 1、文本 (1)v-text语法 缩写: {{…}}(双大括号)的文本插值 方法一: <template><h1> hello </h1><p v-text"data.name"></p><!-- v-text的简写--&…...
Pytorch神经网络的模型架构(nn.Module和nn.Sequential的用法)
一、层和块 在构造自定义块之前,我们先回顾一下多层感知机的代码。下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层,然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。 import torch from torch im…...
JS数组之展开运算符
展开运算符是什么?有什么作用? 展开运算符可以将一个数组展开 const arr [1,2,3,4,5]// 我们使用...展开数组console.log(...arr) //1 2 3 4 5它不会修改原数组 典型运用场景:求数组最大值、最小值、合并数组等 会让我们代码更加简洁 最大值…...
读书笔记:《汽车构造与原理》
《透视汽车会跑的奥秘》《汽车为什么会跑:底盘图解》《汽车为什么会跑:图解汽车构造与原理》 一、心脏:发动机 活塞往复运动转化为曲轴的旋转运动 活塞:膝关节活塞连杆:小腿曲轴:自行车脚踏板 四冲程&…...
INS 量测更新
5 量测更新 5.1 GNSS位置及速度更新 r ^ G P S , i n r ^ I M U n D R − 1 C b n l b v ^ G P S , i n v ^ I M U n ω i n n C b n l b − C b n ω i b b l b \begin{aligned} \hat{r}_{GPS,i}^{n} & \hat{r}_{IMU}^{n} D_{R}^{-1}C_{b}^{n} l^b\\ \hat{v}_{GPS…...
【ssh基础知识】
ssh基础知识 常用命令登录流程配置文件ssh密钥登录生成密钥上传公钥关闭密码登录 ssh服务管理查看日志ssh端口转发 ssh(ssh客户端)是一个用于登录到远程机器并在远程机器上执行命令的程序。 它旨在提供安全的加密通信在不安全的网络上的两个不受信任的主…...
04 开发第一个组件
概述 在Vue3中,一个组件就是一个.vue文件。 在本小节中,我们来开发第一个Vue3组件。这个组件的功能非常的简单,只需要在浏览器上输出一个固定的字符串”欢迎跟着Python私教一起学Vue3“即可。 实现步骤 第一步:新增src/compon…...
【Unity】如何让Unity程序一打开就运行命令行命令
【背景】 Unity程序有时依赖于某些服务去实现一些功能,此时可能需要类似打开程序就自动运行Windows命令行命令的功能。 【方法】 using UnityEngine; using System.Diagnostics; using System.Threading.Tasks; using System.IO; using System.Text...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
Ubuntu系统复制(U盘-电脑硬盘)
所需环境 电脑自带硬盘:1块 (1T) U盘1:Ubuntu系统引导盘(用于“U盘2”复制到“电脑自带硬盘”) U盘2:Ubuntu系统盘(1T,用于被复制) !!!建议“电脑…...
