当前位置: 首页 > news >正文

基于YOLOv8深度学习的路面标志线检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:路面标志线检测与识别对于道路安全维护、交通流畅性提升和自动驾驶技术发展都具有关键性作用。正确的标志线识别能够协助司机作出合适的行驶决策,减少违章行为,避免交通事故。本文基于YOLOv8深度学习框架,通过2776张图片,训练了一个进行路面标志线检测与识别的目标检测模型,准确率高达92%。并基于此模型开发了一款带UI界面的路面标志线检测与识别系统,可用于实时检测场景中的路面标志线检测与识别,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

路面标志线检测与识别对于道路安全维护、交通流畅性提升和自动驾驶技术发展都具有关键性作用。正确的标志线识别能够协助司机作出合适的行驶决策,减少违章行为,避免交通事故,比如区分公交专用车道、直行车道或转弯车道。此外,斑马线的检测有助于提醒驾驶员注意减速礼让行人,而自行车道的识别则可以提醒驾驶员保持对自行车骑行者的警惕。

自动驾驶技术领域,路面标志线识别是保证自动驾驶系统安全导航的核心功能之一。自动驾驶车辆依赖于对标志线类型和路面状况的准确解读,才能做出正确的行驶决策,如保持车道、转弯或靠边停车。同时,该系统也可以用于智能交通监控系统中,辅助监控道路状况,评估交通设计是否合理,并根据实际车流量调整道路标线设计。
此外,城市规划和维护部门可以利用路面标志线检测与识别系统对城市路面状况进行智能化监控,及时发现和维修损坏的路面标志线,保障道路交通秩序、提升道路使用效率。在紧急情况或临时活动中,该系统也能够辅助交通管理人员快速绘制或更改临时交通标志线以适应特殊需求。
综上所述,路面标志线检测与识别系统不仅对个体驾驶者的行车安全至关重要,而且对智能交通系统的整体效率和未来自动驾驶车辆的成功商用发挥着决定性作用。

博主通过搜集不同路面标识线的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的路面标志线检测与识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行13种路面标志线的检测与识别,分别为:['公交专用车道', '黄色标线', '直行车道', '转弯车道', '斑马线', '菱形', '慢行', '左转箭头', '直行箭头', '前进-左转箭头', '前进-右转箭头', '右转箭头', '自行车道']
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述

在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于路面标志线的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含2776张图片,其中训练集包含2167张图片验证集包含417张图片测试集包含192张图片部分图像及标注如下图所示。
在这里插入图片描述

在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入RoadMarkingData目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\RoadMarkingsDetection\datasets\RoadMarkingData\train
val: E:\MyCVProgram\RoadMarkingsDetection\datasets\RoadMarkingData\valid
test: E:\MyCVProgram\RoadMarkingsDetection\datasets\RoadMarkingData\testnc: 13
names: ["Bus lane", "Yellow marking", "Straight lane", "Turning lane", "Pedestrian crosswalk", "Diamond", "Slow", "Left turn arrow", "Straight ahead arrow", "Forward-left turn arrow", "Forward-right turn arrow", "Right turn arrow", "Bicycle lane"]

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/RoadMarkingData/data.yaml', epochs=250, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的mAP@0.5已经达到了0.87以上,平均值为0.89,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/3_jpg.rf.98fff907698460f4b3ab53b06101bb61.jpg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款路面标志线检测与识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的路面标志线检测与识别系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

相关文章:

基于YOLOv8深度学习的路面标志线检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…...

leetCode算法—1.两数之和

难度:* 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你…...

oracle 设置访问白名单

有相关安全策略会要求部分 ip 禁止访问oracle数据库,那么如何实现对IP的白名单设置呢?又如何细分到对用户的限制访问呢?本文将介绍方法给大伙。 1、禁止IP访问数据库(修改sqlnet.ora方式实现) vi $ORACLE_HOME/network…...

Flink系列之:窗口关联

Flink系列之:窗口关联 一、窗口关联二、INNER/LEFT/RIGHT/FULL OUTER三、SEMI四、ANTI五、限制 一、窗口关联 适用于流、批窗口关联就是增加时间维度到关联条件中。在此过程中,窗口关联将两个流中在同一窗口且符合 join 条件的元素 join 起来。窗口关联…...

Eolink 两项产品入选 2023 年广东省名优高新技术产品名录!

近日,2023 年广东省名优高新技术产品正式名单已经发布,Eolink 旗下两项产品荣幸入选! “广东省名优高新技术产品”是广东省对高新技术产品领域的升级和优化的重要措施。名优产品的评选不仅强调了技术的先进性,更对产品的质量、市…...

054:vue工具 --- BASE64加密解密互相转换

第054个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使…...

自动驾驶学习笔记(二十)——Planning算法

#Apollo开发者# 学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往: 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo 社区开发者圆桌会》免费报名—>传送门 文章目录 前言 参考线平滑 双层状态机 EM Planner …...

adb的使用

Adb windows 环境搭建 (1)将adb包安装或者解压到一个路径,并拿到adb.exe所在的路径值,例如,D:\Tools\adb (2)将路径值放进windows环境变量 我的电脑(此电脑图标)右键–》 选择“属…...

会旋转的树,你见过吗?

🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻强烈推荐优质专栏: 🍔🍟🌯C的世界(持续更新中) 🐻推荐专栏1: 🍔🍟🌯C语言初阶 🐻推荐专栏2: 🍔…...

Azure Machine Learning - 提示工程简介

OpenAI的GPT-3、GPT-3.5和GPT-4模型基于用户输入的文本提示工作。有效的提示构造是使用这些模型的关键技能,涉及到配置模型权重以执行特定任务。这不仅是技术操作,更像是一种艺术,需要经验和直觉。本文旨在介绍适用于所有GPT模型的提示概念和…...

服务器的安全包括哪些方面?服务器安全该如何去加固处理?

服务器安全包括如下几个方面: 系统安全:包括操作系统的安全性、系统的漏洞和补丁管理、用户管理、文件权限和访问控制等。 网络安全:包括网络拓扑结构、网络设备的安全性、网络协议的安全性、防火墙和入侵检测等。 数据安全:包括数…...

为什么在Android中需要Context?

介绍 在Android开发中,Context是一个非常重要的概念,但是很多开发者可能并不清楚它的真正含义以及为什么需要使用它。本文将详细介绍Context的概念,并解释为什么在Android应用中需要使用它。 Context的来源 Context的概念来源于Android框架…...

AIGC实战——条件生成对抗网络(Conditional Generative Adversarial Net, CGAN)

AIGC实战——条件生成对抗网络 0. 前言1. CGAN架构2. 模型训练3. CGAN 分析小结系列链接 0. 前言 我们已经学习了如何构建生成对抗网络 (Generative Adversarial Net, GAN) 以从给定的训练集中生成逼真图像。但是,我们无法控制想要生成的图像类型,例如控…...

高性能计算HPC与统一存储

高性能计算(HPC)广泛应用于处理大量数据的复杂计算,提供更精确高效的计算结果,在石油勘探、基因分析、气象预测等领域,是企业科研机构进行研发的有效手段。为了分析复杂和大量的数据,存储方案需要响应更快&…...

秋招上岸记录咕咕咕了。

思考了一下,感觉并没有单独写这样一篇博客的必要。 能够写出来的,一些可能会对人有帮助的东西都做进了视频里面,未来会在blbl发布,目前剪辑正在施工中(?) 另外就是,那个视频里面使…...

vue模板语法

一、插值 1、文本 &#xff08;1&#xff09;v-text语法 缩写&#xff1a; {{…}}&#xff08;双大括号&#xff09;的文本插值 方法一&#xff1a; <template><h1> hello </h1><p v-text"data.name"></p><!-- v-text的简写--&…...

Pytorch神经网络的模型架构(nn.Module和nn.Sequential的用法)

一、层和块 在构造自定义块之前&#xff0c;我们先回顾一下多层感知机的代码。下面的代码生成一个网络&#xff0c;其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层&#xff0c;然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。 import torch from torch im…...

JS数组之展开运算符

展开运算符是什么&#xff1f;有什么作用&#xff1f; 展开运算符可以将一个数组展开 const arr [1,2,3,4,5]// 我们使用...展开数组console.log(...arr) //1 2 3 4 5它不会修改原数组 典型运用场景&#xff1a;求数组最大值、最小值、合并数组等 会让我们代码更加简洁 最大值…...

读书笔记:《汽车构造与原理》

《透视汽车会跑的奥秘》《汽车为什么会跑&#xff1a;底盘图解》《汽车为什么会跑&#xff1a;图解汽车构造与原理》 一、心脏&#xff1a;发动机 活塞往复运动转化为曲轴的旋转运动 活塞&#xff1a;膝关节活塞连杆&#xff1a;小腿曲轴&#xff1a;自行车脚踏板 四冲程&…...

INS 量测更新

5 量测更新 5.1 GNSS位置及速度更新 r ^ G P S , i n r ^ I M U n D R − 1 C b n l b v ^ G P S , i n v ^ I M U n ω i n n C b n l b − C b n ω i b b l b \begin{aligned} \hat{r}_{GPS,i}^{n} & \hat{r}_{IMU}^{n} D_{R}^{-1}C_{b}^{n} l^b\\ \hat{v}_{GPS…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...

Docker拉取MySQL后数据库连接失败的解决方案

在使用Docker部署MySQL时&#xff0c;拉取并启动容器后&#xff0c;有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致&#xff0c;包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因&#xff0c;并提供解决方案。 一、确认MySQL容器的运行状态 …...