torch.gather(...)
1. Abstract
对于 pytorch 中的函数
torch.gather(input, # (Tensor) the source tensordim, # (int) the axis along which to indexindex, # (LongTensor) the indices of elements to gather*,sparse_grad=False,out=None
) → Tensor
有点绕,很多博客画各种图讲各种故事来解释如何从 input 张量中 gather 位置 index 处的值,乱七八糟,我是都没看明白。所以去官网看了文档:
out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0
out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1
out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2
从这三行看,意思还是很明晰的:输出 out 和输入 input 之间的差别就是,把相应位置(dim)的下标替换成 index[i][j][k],dim=0,1,2 分别对应替换的位置0,1,2。但这不够直观!
【注】从上面三行代码可以看出,index 和 input 的维度尺寸是一样的,即 len(index.shape) == len(input.shape),但不一定是相同的形状:index.shape[dim] ≠ input.shape[dim](其他维度的形状必须满足 index.shape <= input.shape)。
2. 图解
2.1 一维向量
先从简单的一维向量看看:

x = torch.tensor([3, 4, 5, 6, 7])
按规则看,out[i] = input[index[i]] # dim == 0,即,从向量里选取指定位置 index[i] 处的数字,放到输出向量 out 的 [i] 处。这个很好理解,python 中 numpy 和 pytorch 都有这样的语法:
x = torch.randn(3)
index = torch.randint(low=0, high=3, size=(5,))
y = x[index]
print(x)
print(index)
print(y)
### output ###
tensor([ 0.8797, 0.2459, -0.1312])
tensor([2, 0, 2, 2, 0])
tensor([-0.1312, 0.8797, -0.1312, -0.1312, 0.8797])
用 torch.gather(...) 函数,就是这样的:
x = torch.tensor([3, 4, 5, 6, 7])
index = torch.tensor([4, 4, 1, 1, 0, 3])
out = torch.gather(x, dim=0, index=index)
### output ###
tensor([7, 7, 4, 4, 3, 6])
举例来说,上面的 index[4] = 0,那么它会寻找 input[index[4]] = input[0] = 3,然后放入 out[4]。这就是英文单词 gather 的意思。
index 的长度是不受限制的,即 gather 多少元素都可以。
小结:在一维向量下,out = torch.gather(x, dim=0, index=index) 等价于 out = x[index]。
2.2 二维矩阵
往上升一个维度,看看对二维矩阵实施 gather 函数的操作:

x = torch.tensor([[3, 4, 5, 6, 7], [9, 8, 7, 6, 5]])
idx = torch.randint(low=0, high=5, size=(2, 6))
y = torch.gather(x, dim=1, index=idx)
print(x)
print(idx)
print(y)
### output ###
tensor([[3, 4, 5, 6, 7],[9, 8, 7, 6, 5]])
tensor([[4, 4, 1, 1, 0, 3],[0, 1, 2, 1, 4, 1]])
tensor([[7, 7, 4, 4, 3, 6],[9, 8, 7, 8, 5, 8]])
按规则看,out[i][j] = input[i][index[i][j]] # dim == 1,即,从向量 input[i] 里选取指定位置 index[i][j] 处的数字,放到输出向量 out[i] 的 [j] 处。也许多了一个维度就有点绕了,但仔细观察,我们可以假定 i = 0,此时:
out[0][j] = input[0][index[0][j]] # 对应上图的左侧
若假定 i = 1,则:
out[1][j] = input[1][index[1][j]] # 对应上图的右侧
即,输出 out[i] 是对输入 imput[i] 执行了一次与一维向量时一样的操作,其中下标是 index[i]。在二维矩阵上的 gather 操作,不过是并行地执行了多个一维向量的 gather。
上面是 dim = 1 时的情况,是沿着矩阵的行进行 gather,当 dim = 0 时,就是沿着列进行 gather:
out[i][0] = input[index[i][0]][0] # dim == 0
out[i][1] = input[index[i][1]][1]
...

也就是并行地执行多个列向量的 gather,每列 index 是一个并行分支,并行分支的数量可以小于 input 的列数,但不能超过,超过的话,它 gather 哪一列呢?
小结:二维矩阵的 gather 操作就是并行地执行了多个一维向量的 gather 操作;dim=1 按行 gather,dim=0 按列 gather。
2.3 高维张量
弄懂一维到二维的 gather,更高维的操作也就清晰了,就是画图有一点难画。假设
x = tensor([[[ 0, 1, 2, 3, 4],[ 5, 6, 7, 8, 9]],[[10, 11, 12, 13, 14],[15, 16, 17, 18, 19]],[[20, 21, 22, 13, 24],[25, 26, 27, 28, 29]]])
则当 dim == 0 时,是沿着第一维进行 gather 的,那么 index.shape[0] (一个并行分支 gather 的元素的数量) 可为任意数,这里设置为 4,其他 index.shape[i≠0] <= input.shape[i≠0]:
index = tensor([[[1, 2, 2],[2, 2, 0]],[[0, 0, 1],[1, 0, 1]],[[2, 0, 0],[0, 1, 2]],[[1, 1, 0],[0, 0, 0]]])
index.shape == (4, 2, 3),执行:
y = torch.gather(x, dim=0, index=index)
的示意图如下:

只画了看得见的前两列(两个并行 gather 分支)。红色和绿色箭头表示两列下标沿着 dim=0 进行 gather 操作,每一列和一维向量的 gather 是一样的,只不过这里有 2*3 个列。
再往高维拓展,也是一样,都是从基本的一维向量 gather 拓到并行 gather。
相关文章:
torch.gather(...)
1. Abstract 对于 pytorch 中的函数 torch.gather(input, # (Tensor) the source tensordim, # (int) the axis along which to indexindex, # (LongTensor) the indices of elements to gather*,sparse_gradFalse,outNone ) → Tensor有点绕,很多博客画各…...
vscode如何开发微信小程序?JS与TS的主要区别?
要在 VS Code 中编写微信小程序代码并同步到 Git,需要安装以下插件: 1. 微信小程序插件(WeChat Mini Program):此插件提供了微信小程序的语法高亮、代码提示、调试、上传等功能。 2. Git 插件(GitLens、…...
产品入门第五讲:Axure交互和情境
目录 一.Axure交互和情境的介绍 1.交互介绍 概念 常见的Axure交互设计技巧 2.情境介绍 概念 常见的Axure情境设计技巧: 二.实例展示 1.ERP登录页到主页的跳转 2.ERP的菜单跳转到各个页面 📚📚 🏅我是默,一个…...
Python 自动化之收发邮件(一)
imapclient / smtplib 收发邮件 文章目录 imapclient / smtplib 收发邮件前言一、基本内容二、发送邮件1.整体代码 三、获取邮件1.整体代码 总结 前言 简单给大家写个如何用Python进行发邮件和查看邮件教程,希望对各位有所帮助。 一、基本内容 本文主要分为两部分…...
Flutter开发笔记 —— sqflite插件数据库应用
前言 今天在观阅掘金大佬文章的时候,了解到了该 sqflite 插件,结合官网教程和自己实践,由此总结出该文,希望对大家的学习有帮助! 插件详情 Flutter的 SQLite 插件。支持 iOS、Android 和 MacOS。 支持事务和batch模式…...
OxLint 发布了,Eslint 何去何从?
由于最近的rust在前端领域的崛起,基于rust的前端生态链遭到rust底层重构,最近又爆出OxLint,是一款基于Rust的linter工具Oxlint在国外前端圈引起热烈讨论,很多大佬给出了高度评价;你或许不知道OxLint,相比ES…...
第一次使用ThreadPoolExecutor处理业务
通过对业务逻辑的分析,进行编码,先把第一条sql查出来的数据进行分组,然后分别使用不同的线程去查询数据返回,并添加到原来的数据中。 总感觉哪里写的不对,但是同事们都没用过这个,请大家指教一下ÿ…...
Sharding-Jdbc(6):Sharding-Jdbc日志分析
1 修改配置 将配置文件中的开启分片日志从false改为true Sharding-JDBC中的路由结果是通过分片字段和分片方法来确定的,如果查询条件中有 id 字段的情况还好,查询将会落到某个具体的分片;如果查询没有分片的字段,会向所有的db或者是表都会查…...
centos安装了curl却报 -bash: curl: command not found
前因 我服务器上想用curl下载docker-compress,发现没有curl命令,就去下载安装,安装完成之后,报-bash: curl: command not found 解决方法 [rootcentos ~]# rpm -e --nodeps curl warning: file /usr/bin/curl: remove failed: …...
Re58:读论文 REALM: Retrieval-Augmented Language Model Pre-Training
诸神缄默不语-个人CSDN博文目录 诸神缄默不语的论文阅读笔记和分类 论文名称:REALM: Retrieval-Augmented Language Model Pre-Training 模型名称:Retrieval-Augmented Language Model pre-training (REALM) 本文是2020年ICML论文,作者来自…...
java的json解析
import com.alibaba.fastjson.*; public class JsonParser { public static void main(String[] args) { String jsonStr "{\"name\":\"John\", \"age\":30}"; // JSON字符串示例 // 将JSON字符串转换为JSONObject对象 JSONObje…...
Spring事务失效的几种情况
Spring事务失效的几种情况 1、未被Spring管理的类中的方法 这种情况是指:没有在类上添加Service、Repository、Component等注解将类交由Spring管理,然后该类中还有加上了Transactional注解 例如: Service //如果没有添加Service这个注解…...
filter的用法与使用场景:筛选数据
//this.allCollectorList:后台给定的所有可供选择数据 //this.collectorData:目前已经存在选中列表中的数据//目前已经存在选中列表中的数据id getSelIdList() {let eIdList = []this.collectorData.forEach(row => {eIdList.push(row.id)})return eIdList },//在中的数据…...
ClickHouse(18)ClickHouse集成ODBC表引擎详细解析
文章目录 创建表用法示例资料分享参考文章 ODBC集成表引擎使得ClickHouse可以通过ODBC方式连接到外部数据库. 为了安全地实现 ODBC 连接,ClickHouse 使用了一个独立程序 clickhouse-odbc-bridge. 如果ODBC驱动程序是直接从 clickhouse-server中加载的,那…...
网络攻击(一)--安全渗透简介
1. 安全渗透概述 目标 了解渗透测试的基本概念了解渗透测试从业人员的注意事项 1.1. 写在前面的话 在了解渗透测试之前,我们先看看,信息安全相关的法律是怎么样的 中华人民共和国网络安全法 《中华人民共和国网络安全法》由全国人民代表大会常务委员会…...
视频号小店资金需要多少?
我是电商珠珠 视频号团队于22年7月发展了自己的电商平台-视频号小店,相比于抖音电商来讲,可以有效的将公域流量转化为私域,对于商家来说,是一件利好的事情。 可以有效的提高客户的黏性,增加店铺回头客。 有很多想要…...
机器学习项目精选 第一期:超完整数据科学资料合集
大噶吼,不说废话,分享一波我最近看过并觉得非常硬核的资源,包括Python、机器学习、深度学习、大模型等等。 1、超完整数据科学资料合集 地址:https://github.com/krishnaik06/The-Grand-Complete-Data-Science-Materials Pytho…...
档案数字化管理可以提供什么服务?
档案数字化管理提供了便捷、高效和安全的档案管理服务,帮助组织更好地管理和利用自己的档案资源。 具体来说,专久智能档案数字化管理可以提供以下服务: 1. 档案扫描和数字化:将纸质档案通过扫描仪转换为数字格式,包括文…...
第一周:AI产品经理跳槽准备工作
一、筛选意向行业 因素1:行业发展情况 1. 行业发展情况和政策 待补充 2. AI人才市场情况 报告下载:待补充 2023年2⽉,ChatGPT爆⽕在脉脉引发各界搜索和热议,当⽉,“AIGC”、“⼈⼯智能”、“ChatGPT”、“⼤模型”等相关词汇搜索指数达到459.31,同⽐增⻓超5.4倍,内…...
基于核心素养高中物理“深度学习”策略及其教学研究课题论证设计方案
目录 一、课题的提出及意义 二、课题的核心概念及其界定...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
