2023年国赛高教杯数学建模D题圈养湖羊的空间利用率解题全过程文档及程序
2023年国赛高教杯数学建模
D题 圈养湖羊的空间利用率
原题再现
规模化的圈养养殖场通常根据牲畜的性别和生长阶段分群饲养,适应不同种类、不同阶段的牲畜对空间的不同要求,以保障牲畜安全和健康;与此同时,也要尽量减少空间闲置所造成的资源浪费。在实际运营中,还需要考虑市场上饲料价格和产品销售价格的波动以及气候、疾病、种畜淘汰、更新等诸多复杂且关联的因素,但空间利用率是相对独立并影响养殖场经营效益的重要问题。
湖羊是国家级绵羊保护品种,具有早期生长快、性成熟早、四季发情并且可以圈养等优良特性。湖羊养殖场通常建有若干标准羊栏,每一标准羊栏所能容纳的羊只数量由羊的性别、大小、生长阶段决定。
湖羊养殖的生产过程主要包括繁殖和育肥两大环节。人工授精技术要求高,因此湖羊繁殖大多采用种公羊和基础母羊自然交配的方式。怀孕母羊分娩后给羔羊哺乳,羔羊断奶后独立喂饲,育肥长成后出栏。自然交配时将若干基础母羊与一只种公羊关在一个羊栏中,自然交配期约为 3 周,然后将种公羊移出。受孕母羊的孕期约为 5 个月,每胎通常产羔 2 只。母羊分娩后哺乳期通常控制在 6 周左右,断奶后将羔羊移至育肥羊栏喂饲。一般情况下,羔羊断奶后经过7 个月左右育肥就可以出栏。母羊停止哺乳后,经过约 3 周的空怀休整期,一般会很快发情,可以再次配种。按上述周期,正常情况下,每只基础母羊每 2 年可生产 3 胎。在不考虑种公羊配种能力差异的情况下,种公羊与基础母羊一般按不低于 1:50 的比例配置。种公羊和母羊在非交配期原则上不关在同一栏中。
某湖羊养殖场设置标准羊栏,规格是:空怀休整期每栏基础母羊不超过 14 只;非交配期的种公羊每栏不超过 4 只;自然交配期每栏 1 只种公羊及不超过 14 只基础母羊;怀孕期每栏不超过 8 只待产母羊;分娩后的哺乳期,每栏不超过 6 只母羊及它们的羔羊;育肥期每栏不超过 14只羔羊。原则上不同阶段的羊只不能同栏。
养殖场的经营管理者为保障效益,需要通过制定生产计划来优化养殖场的空间利用率。这里的生产计划,主要是决定什么时间开始对多少可配种的基础母羊进行配种,控制羊只的繁育期,进而调节对羊栏的需求量,以确保有足够多的羊栏,同时尽量减少羊栏闲置。当羊栏不够时,可以租用其他场地。
请建立数学模型讨论并解决以下问题:
问题 1 不考虑不确定因素和种羊的淘汰更新,假定自然交配期 20 天,母羊都能受孕,孕期 149 天,每胎产羔 2 只,哺乳期 40 天,羔羊育肥期 210 天,母羊空怀休整期 20 天。该湖羊养殖场现有 112 个标准羊栏,在实现连续生产的条件下,试确定养殖场种公羊与基础母羊的合理数量,并估算年化出栏羊只数量的范围。若该养殖场希望每年出栏不少于 1500 只羊,试估算现有标准羊栏数量的缺口。
问题 2 在问题 1 的基础上,对 112 个标准羊栏给出具体的生产计划(包括种公羊与基础母羊的配种时机和数量、羊栏的使用方案、年化出栏羊只数量等),使得年化出栏羊只数量最大。
问题 3 问题 1 和问题 2 中用到的数据都没有考虑不确定性,一旦决定了什么时间开始对多少可配种的基础母羊进行配种,后续对羊栏的安排和需求也就随之确定。例如,用 3 个羊栏给 42 只母羊进行配种,孕期需要 6 个羊栏,哺乳期需要 7 个羊栏给怀孕母羊分娩和哺乳,哺乳期结束就需要给 84 只断奶羔羊和 42 只母羊共安排 9 个羊栏进行育肥和休整。但实际情况并非如此,配种成功率、分娩羔羊的数目和死亡率等都有不确定性,哺乳时间也可以调控,这些都会影响空间需求。
现根据经验作以下考虑:
(1) 母羊通过自然交配受孕率为 85%,交配期结束后 30 天可识别出是否成功受孕;
(2) 在自然交配的 20 天中受孕母羊的受孕时间并不确知,而孕期会在 147-150 天内波动,这些因素将影响到预产期范围;
(3) 怀孕母羊分娩时一般每胎产羔 2 只,少部分每胎产羔 1 只或 3 只及以上,目前尚没有实用手段控制或提前得知产羔数。羔羊出生时,有夭折的可能,多羔死亡率高于正常。通常可以按平均每胎产羔 2.2 只、羔羊平均死亡率 3%估算。
(4) 母羊哺乳期过短不利于羔羊后期的生长,通常是羔羊体重达到一定标准后断奶;而哺乳期过长,母羊的身体消耗就越大,早点断奶,有利于早恢复、早发情配种。一种经验做法是将哺乳期控制在 35-45 天内,以 40 天为基准,哺乳期每减少 1 天,羔羊的育肥期增加 2 天;哺乳期每增加 1 天,羔羊的育肥期减少 2 天。除此之外,母羊的空怀休整期可在不少于 18 天的前提下灵活调控。
此外,如有必要,允许分娩日期相差不超过 7 天的哺乳期母羊及所产羔羊同栏,允许断奶日期相差不超过 7 天的育肥期羔羊同栏,允许断奶日期相差不超过 7 天的休整期母羊同栏。为简化问题,不考虑母羊流产、死亡以及羔羊在哺乳期或育肥期夭折和个体发育快慢等情况。
在以上不确定性的考虑下,生产计划的制定与问题 1 和问题 2 将有较大的不同:一旦作出了“什么时间开始对多少可配种的基础母羊进行配种”的决定,后续羊栏的需求和安排不再是随之确定的,而是每一步都会出现若干种可能的情况需要作相应的并遵从基本规则的安排处理,但无法改变或调整上一步。因此,某种意义上,本问题要讨论研究的生产计划将是一个应对多种可能情况的“预案集”。
请综合考虑可行性和年化出栏羊只数量,制定具体的生产计划,使得整体方案的期望损失最小。其中整体方案的损失由羊栏使用情况决定,当羊栏空置时,每栏每天的损失为 1;当羊栏数量不够时,所缺的羊栏每栏每天的损失(即租用费)为 3。
整体求解过程概述(摘要)
湖羊是优秀的养殖品种,湖羊养殖场通常有若干标准羊栏,根据湖羊的性别和生长阶段分群饲养,不同阶段、性别和大小的羊只对空间要求不同,所以每一羊栏所容纳的羊只数量由上述因素决定,在实际运营中,空间利用率是相对独立并影响养殖场经营效益的重要问题,本文主要研究了湖羊养殖过程中空间利用率的问题,给出了具体生产计划,较好地解决了提出的三个问题。
针对问题 1,母羊的工作周期包括交配期、孕期、哺乳期和休整期,一整个周期持续229天,仅考虑单个批次一定数量的基础母羊以固定周期的方式重复工作,可求出其(包括羔羊)所占用的羊栏天数,在理想状态下多批次交替工作可以把羊栏使用数的波动抹平,而出栏羊数正比于基础母羊的数量n,可求出n对应的每一栏能转化为多少年化出栏数.遍历n 便可以得到年化出栏羊只数量范围的估计为1163 至1312,要想年化出栏羊只数量达到1500,缺口约为16至32。
针对问题2,我们考虑了一般情形,即决策变量为批次之间的间隔g_i和每批次进入交配期的基础母羊数量x_i,以母羊总数量为目标函数,112 个羊栏数量为约束条件建立规划模型,然而该模型是非线性的整数规划,且非线性约束条件非常多,基本不可解。我们对模型进行了化简,固定间隔和数量,即g_i=g,x_i=x,这样决策变量只有两个整数,决策空间有限,用遍历的方法得到最优解g=22,x=40 在一个工作周期内重复 10次,该方案的年化出栏羊只数量1200(2年3胎)。然而该方案最多只使用了110个羊栏,有2个羊栏的元余,且空间利用率只有 95.56%我们经过一定范围的遍历得到了更优解g=22,x_1=48,x_2=…=x_10=40,年化出栏羊只数量达到了1224只,且空间利用率97.38%.为最优解。
针对问题3,我们研究了随机因素对母羊和羔羊各个时期的影响,怀孕时间和孕期的分布使得我们需要在孕期、哺乳期、休整期对母羊分批次管理,包括育肥期的羔羊,不同分支的决策各有不同,我们确定225天的大周期,且每批次之间间隔 25 天,随着时间发展将出现分支,第 51 天,部分没有成功怀孕的母羊退出本次工作,随后按孕期结束时间不同分了3个分支,每个分支尽量保证哺乳期的时长,但不能过于压缩休整期与之对应的羔羊也分为了3个分支,这样只需要确定每批次进入交配期的基础母羊的数量 x,具体方案就确定下来了,我们用计算机模拟充分多的周期,用蒙特卡洛方法计算损失数期望,并以其最小为优化目标,建立优化问题模型,由于决策变量是1维的,我们用遍历法求解我们观察到随着 x的增加损失先递减后递增,在x=40时得到最小的日均损失数3.79,并给出了局部和全局的羊栏数使用情况可视化结果。
模型假设:
1、简单起见,在方案中各批次之间的交配期不重合。
2、按2年3胎的方式计算年化出栏羊只数量。
3、假设羔羊进入育肥期就不会死亡。
4、允许同批次的母羊之间的移动,即从1个该批次的羊栏移至另 1个同批次的羊栏,这样如果同批次的不同羊栏都有母羊移除至下一个阶段,那么剩余的同批次羊可以合并。
5、母羊的怀孕时间和孕期近似服从均匀分布。
问题分析:
问题 1的分析
针对问题 1,注意到母羊的工作周期为 229 天,我们考虑让n 只基础母羊进入交配期,且过了休整期后立刻进入下一个工作周期.在这一个周期内这n只母羊与其生产的羔羊在每个时间段使用多少羊栏是唯一确定的.如果只有1个批次反复来回,那么使用的羊栏数必然波动较大,增加批次可以使得羊栏的使用更平均,我们按理想状态估算即多批次交替后,综合羊栏使用数量关于时间成近似的常数函数关系,那么该批次平均占用的羊栏数量就可以求出来,而年化出栏数与母羊数量正相关,因此可以求出在不同决策下每一个羊栏对应的出栏羊只数量,让 n 从一个固定的范围遍历便可以得到112 个羊栏的条件下出栏羊只数量的范围,也可以估算要达到 1500 只年化出栏羊数额外需要的羊栏数。
问题2的分析
针对问题 2,沿用问题1中固定数量的基础母羊和批次之间固定间隔的生产模式而当每批次基础母羊和间隔给定后,我们需要计算在这样的决策下进入稳定期后,每一天所使用的羊栏数,我们建立优化模型,以母羊数量总和为优化目标,以最大羊栏数为约束条件,而经过简化,决策变量就是二维的整数,我们考虑采用遍历的方法进行求解,并进一步的对我们的结果进行优化。
问题3的分析
针对问题3,仍然采用问题1和2的固定数量固定间隔的生产模式,但是因为有随机因素的参与,问题变得更加复杂。虽然交配期没变,但是孕期结束的时间并不固定,同时还有部分未能成功受孕的母羊因为要进入后续批次而退出,根据我们的简化假设孕期结束的时间相互相差 21 天,而根据孕期哺乳期的条件,需要把同一批进入交配期的羊分成3个分支,这3个分支的状态和决策各不相同,包括后续产下的羔羊也对应的分为 3 个分支。
经过我们分析,应尽可能的延长哺乳期的时间,但是又不能压缩休整期的时间.多方考虑下我们需要确定好工作周期的长度和固定间隔,当基础母羊数量给定后,对应的羊栏使用数量以及相应的损失也可以求出,类似问题 1,让母羊数量遍历找到使得损失最小的方案以最大程度的利用空间。
模型的建立与求解整体论文缩略图
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可
程序代码:(代码和文档not free)
function yi = rdnump(xi,p,y)
yi(1:length(xi))= 0;
pp = yi;
for i= 1:length(p)
pp(i)= sum(p(1:i));
end
for i = 1:y
rr = rand();
index = find(pp>rr,1);
yi(index) = yi(index) + 1;endend
clear;
pp=4;
g(1:10)= 22;
p=[20,149,40,2e];
k=10; % floor(sum(p)/p(1)) - 1;
p5 = 21;
x(1:k)= 40;x(1)= 48;
m= ceil(sum(x) / 5e);
m2= ceil(m/4);nn =[14,8,6,14];
t(1:k,1:4*pp +1)= 0;
T(1:k,1:2*pp)=0;
t(1,1)=1;
forj= 2:5 t(1,j)= t(1,]-1)+ p(j - 1);end
T(1,1)= t(1,4);T(1,2)= t(1,4) + p5;
for i= 2:pp
t(1,4*(i- 1)+2:4*1+1) = t(1,4*(i - 2)+2:4*(i - 1)+1)+ Sum(p);
T(1,2*(i-1)+1:2*)= T(,2*(i-2)+1:2*(- 1))+ Sum(p);endtmax = 1000;for i=2:k
t(i,:)=t(i-1,:)+g(i-1);
T(i,:)= T(i- 1,:)+ g(i-1);enddeltaij(1:k,1:4,1:tmax)= 0;
for 1 = 1:tmaxfor i = 1:kkk = find(t(i,:) <= l,1,"last");j=1+ mod((kk -1),4);deltaij(i,j,1) =1;endend
for 1= 1:sum(p)for i = 1:kif max(deltaij(i,:,1))== 0 deltaij(i,41)=1; endend
enddeltai bar(1:k,1:tmax)=0;for l = 1:tmaxfor i=1:kkk = find(T(i,:)<= l,1,"last");if mod(kk,2) == 1deltai_bar(i,1) =1;endendend
Delta(1:tmax)=0;for 1 = 1:tmaxDelta(1) = max(deltaij(:,1,1));endN(1:tmax) = 0 ;
for l = 1:tmaxN1=0;N2=0;for i=1:k[n1,m1]=numjp(x(i),m);n=[n1 + ml,ceil(x(i) / nn(2)),ceil(x(i) / nn(3)),ceil(x(i) / nn(4))]; for j =1:4N1 = N1 + ceil(deltaij(i,j,1)* n(j));
endN2 = N2 + ceil(2* deltai_bar(i,1) * x(i) / 14);end
N3=(1 - Delta(1)) * m2;
N(1)=N1+N2+N3;endplot((1:length(N)),N)
xlabel('天数')
ylabel('羊栏数')
N max = max(N);
index1 = find(N == max(N),1);
pct = sum(N(indexl:index1 + sum(p) - 1)) / (sum(p)* N max);
NN1(1:k,1:sum(p))= 0;
NN2(1:k,1:sum(p))= 0;
NN3(1:sum(p))= 0;
for l = index1:index1 + sum(p) - 1for i = 1:k[n1,m1]= numjp(x(i),m);n=[n1,ceil(x(i) / nn(2)),ceil(x(i) / nn(3)),ceil(x(i) / nn(4))]; for j = 1:4NN1(i,l - index1 +1)= NN1(i,l - index1 + 1) + deltaij(i,j,l) * n(j);endNN2(i,l - index1 + 1)= NN2(,l - ndex1 + 1) + deltai bar(i,l) * ceil(2 * x(i)
NN3(I index1 +1)= NN3( - index1 + 1) + deltaij(i,1,l)* m1;endNN3(1 - index1 +1)= NN3(1 - index1+1)+(1- Delta(1))* m2;
/14);endNN_re(1:2*k+1,1:sum(p))= 0 ;
NN_re(1:2:2*k,:)= NN1;NN re(2:2:2*k,:)= NN2;NN re(2* k +1,:)= NN3;
clear;c_f=[];
Gf=[];
for x= 30:60P= 1000;imax=9 * p - 1;T=25*(9*P-1)+ 42; N(1:1:T)=0;C= N;Deltax=[];G_bar =[];i=1;[NN,Delta xx,GG bar] = f3(x);Delta x =[Delta x,Delta xx];G bar =[G bar,GG bar];
N(1+25*(i-1):14 25*(i - 1)+42)= N(1+25*(i- 1):1+25*(i-1)420) + NN;i=2;[NN,Delta xx,GG bar] = f3(x)Delta x =[Delta x,Delta xx];G bar = [G bar,GG bar];N(1+25*(i- 1):1+25* (i - 1)+42)= N(1+25*(i- 1):1+25* (i- 1)428)+NN;for i = 3:imaxxx=x + Delta x(i-2);[NN,Delta xx,GG bar] = f3(xx);Delta x =[Delta x,Delta xx];G bar =[G bar,G bar];N(1+25*(i- 1):1+25*(i-1)+42) = N(1+ 25*(i-1):1+25*(i-1)+ 42)+NN;endindex1 = 901:1808;index2=451:225*P;for t = 1:Tif N(t) >=112C(t)=3*(N(t)-112);elsec(t)=112 - N(t);endendc_f =[C_f;mean(C(index2))]; [G_f;sum(G_bar(18:9*P-1)) /(6*P-12)];end
plot(index1,N(index1))
xlabel('天数')
ylabel('羊栏数')
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可
相关文章:

2023年国赛高教杯数学建模D题圈养湖羊的空间利用率解题全过程文档及程序
2023年国赛高教杯数学建模 D题 圈养湖羊的空间利用率 原题再现 规模化的圈养养殖场通常根据牲畜的性别和生长阶段分群饲养,适应不同种类、不同阶段的牲畜对空间的不同要求,以保障牲畜安全和健康;与此同时,也要尽量减少空间闲置所…...

Flink系列之:Table API Connectors之Raw Format
Flink系列之:Table API Connectors之Raw Format 一、Raw Format二、示例三、Format 参数四、数据类型映射 一、Raw Format Raw format 允许读写原始(基于字节)值作为单个列。注意: 这种格式将 null 值编码成 byte[] 类型的 null。这样在 ups…...

社交网络分析3:社交网络隐私攻击、保护的基本概念和方法 + 去匿名化技术 + 推理攻击技术 + k-匿名 + 基于聚类的隐私保护算法
社交网络分析3:社交网络隐私攻击、保护的基本概念和方法 去匿名化技术 推理攻击技术 k-匿名 基于聚类的隐私保护算法 写在最前面社交网络隐私泄露用户数据暴露的途径复杂行为的隐私风险技术发展带来的隐私挑战经济利益与数据售卖防范措施 社交网络 用户数据隐私…...

2023大湾区汽车创新大会在深圳坪山开幕
12月15日,2023大湾区汽车创新大会在深圳坪山开幕。 本次大会是由广东省科学技术厅、深圳市发展和改革委员会、深圳市工业和信息化局、中共深圳市新能源和智能网联汽车产业链委员会、坪山区人民政府指导,北京理工大学深圳汽车研究院、广东省大湾区新能源汽…...

Graylog 中日志级别及其对应的数字
在 Graylog 中,日志级别 level 通常使用数字表示,数字越低表示日志级别越高。以下是常见的日志级别及其对应的数字表示: DEBUG(调试):对应数字 7。INFO(信息):对应数字 …...

智能手表上的音频(五):录音
上篇讲了语音通话,本篇讲录音。录音功能就是把录到的音频保存成文件。保存文件的格式支持两种:一是PCM(16K采样)的WAV格式,二是AMR-NB(8k采样)的AMR格式。WAV格式简单:44字节的文件头PCM 数据,示…...

2023.12.17 关于 Redis 的特性和应用场景
目录 引言 Redis 特性 内存中存储数据 可编程性 可扩展性 持久化 支持集群 高可用性 Redis 优势 Redis 用作数据库 Redis 相较于 MySQL 优势 Redis 相较于 MySQL 劣势 Redis 用作缓存 典型场景 Redis 存储 session 信息 Redis 用作消息队列 初心 消息队列的…...

智能优化算法应用:基于社会群体算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于社会群体算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于社会群体算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.社会群体算法4.实验参数设定5.算法结果6.…...

Kotlin 笔记 -- Kotlin 语言特性的理解(二)
都是编译成字节码,为什么 Kotlin 能支持 Java 中没有的特性? kotlin 有哪些 Java 中没有的特性: 类型推断、可变性、可空性自动拆装箱、泛型数组高阶函数、DSL顶层函数、扩展函数、内联函数伴生对象、数据类、密封类、单例类接口代理、inter…...

数据结构【1】:数组专题
一、定义 数组是编程中一种强大的数据结构,它允许您存储和操作相同类型元素的集合。在 Python 中,数组是通过数组模块创建的,该模块提供了一个简单的接口来创建、操作和处理数组。 二、创建数组 在 Python 中,可以使用内置的 a…...

【Spring】Spring 事务
Spring 事务 文章目录 Spring 事务1. 简介2. Spring事务管理器3. 基本使用4. 属性剖析5. 声明式事务问题场景5.1 事务不生效5.2 事务不回滚5.3 大事务问题 6. 编程式事务 1. 简介 编程式事务:指手动编写程序来管理事务,即通过编写代码的方式直接控制事务…...

Ubuntu 虚拟机环境,编译AOSP源码
环境 : VMware虚拟机 Ubuntu 20.04.3 LTS 搭建配置开发环境 sudo apt-get install git-core gnupg flex bison build-essential zip curl zlib1g-dev gcc-multilib g-multilib libc6-dev-i386 libncurses5 lib32ncurses5-dev x11proto-core-dev libx11-dev lib32z1-dev libgl…...

2023.12.18杂记
今天特地搜了一下国内不错的博客网站,本来想在掘金上写的,但是怕被人喷(,所以还是决定在csdn上写了哈哈哈。 这篇文章主要整理一下我今天写代码时遇到的疑惑以及记录一下思考过程吧。 第一个注意的地方,我们的get查询…...

智能优化算法应用:基于阿基米德优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于阿基米德优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于阿基米德优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.阿基米德优化算法4.实验参数设定…...

K8s内容器拓扑图工具
1.背景:随着线上容器越来越多,需要一个可视化的方式展示各个容器之间的拓扑图。 2.需求:轻量级,部署方便。 3.部署 helm repo add groundcover https://helm.groundcover.com/ helm repo update helm install caretta --namespa…...

掌握 Babel:让你的 JavaScript 与时俱进(上)
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…...

Mysql进阶-InnoDB引擎事务原理及MVCC
事务原理 事务基础 事务是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系 统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。 事务的四大特性: 原子性(A…...

「X」Embedding in NLP|神经网络和语言模型 Embedding 向量入门
在「X」Embedding in NLP 进阶系列中,我们介绍了自然语言处理的基础知识——自然语言中的 Token、N-gram 和词袋语言模型。今天,我们将继续和大家一起“修炼”,深入探讨神经网络语言模型,特别是循环神经网络,并简要了解…...

JVM-11-运行时栈帧结构
“栈帧”(Stack Frame)则是用于支持虚拟机进行方法调用和方法执行背后的数据结构,它也是虚拟机运行时数据区中的虚拟机栈(Virtual MachineStack)的栈元素。 栈帧存储了方法的局部变量表、操作数栈、动态连接和方法返回…...

【经典LeetCode算法题目专栏分类】【第6期】二分查找系列:x的平方根、有效完全平方数、搜索二位矩阵、寻找旋转排序数组最小值
《博主简介》 小伙伴们好,我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! X的平方根 class Soluti…...

【大麦小米学量化】使用xtquant调用迅投MiniQMT客户端定时操作逆回购,再也不担心忘了赚零花钱了(含完整源代码)
文章目录 前言一、逆回购是什么?1. 什么是逆回购?2. 最低参与金额是多少?3. 逆回购交易是否安全?4. 逆回购交易适合什么类型的客户? 二、讯投XtQuant是什么?1. XtQuant运行依赖环境2. XtQuant运行逻辑 三、…...

php hyperf 读取redis,存储到数据库
背景说明 小白:伟哥,java中的set是无序的,Redis中可以带顺序吗? 伟哥:可以, 不过不叫set了,叫zset。 概述 SortedSet又叫zset,它是Redis提供的特殊数据类型,是一种特殊…...

云原生之深入解析K8S 1.27新特性如何简化状态服务跨集群平滑迁移
一、背景 Kubernetes v1.26 为 StatefulSet 引入了一个新的 Alpha 级别特性,可以控制 Pod 副本的序号。从 Kubernetes v1.27 开始,此特性进级到 Beta 阶段。序数可以从任意非负数开始, 那么该如何使用此功能呢?StatefulSet 序号为…...

鸿蒙OS:打破界限的操作系统新星
导言 鸿蒙OS(HarmonyOS)是华为公司为应对技术封锁而推出的分布式操作系统,其背后蕴含着华为构建全球数字生活愿景的雄心。本文将深入剖析鸿蒙OS的起源、核心特性,并展望其未来在数字生态中的角色。 1. 背景与起源 华为的…...

预测性维护在汽车制造行业中的应用
汽车制造行业是一个高度复杂和精细化的领域,依赖于各种设备来完成生产流程。这些设备包括机械装配线、焊接机器人、喷涂设备、传送带等。然而,这些设备在长时间运行中不可避免地会遇到各种故障,给生产进程带来延误和成本增加。为了应对这一挑…...

分布式链路追踪 —— 基于Dubbo的traceId追踪传递
文章目录 原文链接RpcContext 上下文对象Dubbo 过滤器(Filter)对象基于Dubbo的traceId追踪传递实现 原文链接 RpcContext 上下文对象 在实现 Dubbo 调用之间的链路跟踪之前,先简单了解 RpcContext 上下文对象和 Filter 过滤器对象ÿ…...

【uniapp小程序-上拉加载】
在需要上拉加载的页面的page.json上添加红框框里面的 onReachBottom() {if(this.commentCurrent<this.commentTotal){this.commentCurrent 1; this.commentList();this.status loading;}else{this.status ;} }, methods:{commentList(){let params {courseid:this.cour…...

ubuntu添加路由
ip route show 查看当前路由表 sudo ip route add /mask via 添加一条路由 目标ip 1.1.1.1/100 下一跳 2.2.2.2 sudo ip route add 1.1.1.1/100 via 2.2.2.2 dev ens160 proto static metric 100这是一条Linux命令,用于添加一个静态路由。具体含义如下࿱…...

python图像二值化处理
目录 1、双峰法 2、P参数法 3、迭代法 4、OTSU法 图像的二值化处理是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。二值化是图像分割的一种最简单的方法,可以把灰度图像转换成二值图像。具体实现是将大…...

4.配置系统时钟思路及方法
前言: 比起之前用过的三星的猎户座4412芯片,STM32F4的系统时钟可以说是小巫见大巫,首先我们需要清晰时钟产生的原理:几乎大多数的芯片都是由晶振产生一个比较低频的频率,然后通过若干个PLL得到单片机能承受的频率&…...