智能优化算法应用:基于阿基米德优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于阿基米德优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于阿基米德优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.阿基米德优化算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用阿基米德优化算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.阿基米德优化算法
阿基米德优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/119999874
阿基米德优化算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
阿基米德优化算法参数如下:
%% 设定阿基米德优化优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升。表明阿基米德优化算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:

智能优化算法应用:基于阿基米德优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于阿基米德优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于阿基米德优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.阿基米德优化算法4.实验参数设定…...

K8s内容器拓扑图工具
1.背景:随着线上容器越来越多,需要一个可视化的方式展示各个容器之间的拓扑图。 2.需求:轻量级,部署方便。 3.部署 helm repo add groundcover https://helm.groundcover.com/ helm repo update helm install caretta --namespa…...

掌握 Babel:让你的 JavaScript 与时俱进(上)
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…...

Mysql进阶-InnoDB引擎事务原理及MVCC
事务原理 事务基础 事务是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系 统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。 事务的四大特性: 原子性(A…...

「X」Embedding in NLP|神经网络和语言模型 Embedding 向量入门
在「X」Embedding in NLP 进阶系列中,我们介绍了自然语言处理的基础知识——自然语言中的 Token、N-gram 和词袋语言模型。今天,我们将继续和大家一起“修炼”,深入探讨神经网络语言模型,特别是循环神经网络,并简要了解…...

JVM-11-运行时栈帧结构
“栈帧”(Stack Frame)则是用于支持虚拟机进行方法调用和方法执行背后的数据结构,它也是虚拟机运行时数据区中的虚拟机栈(Virtual MachineStack)的栈元素。 栈帧存储了方法的局部变量表、操作数栈、动态连接和方法返回…...

【经典LeetCode算法题目专栏分类】【第6期】二分查找系列:x的平方根、有效完全平方数、搜索二位矩阵、寻找旋转排序数组最小值
《博主简介》 小伙伴们好,我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! X的平方根 class Soluti…...
【大麦小米学量化】使用xtquant调用迅投MiniQMT客户端定时操作逆回购,再也不担心忘了赚零花钱了(含完整源代码)
文章目录 前言一、逆回购是什么?1. 什么是逆回购?2. 最低参与金额是多少?3. 逆回购交易是否安全?4. 逆回购交易适合什么类型的客户? 二、讯投XtQuant是什么?1. XtQuant运行依赖环境2. XtQuant运行逻辑 三、…...

php hyperf 读取redis,存储到数据库
背景说明 小白:伟哥,java中的set是无序的,Redis中可以带顺序吗? 伟哥:可以, 不过不叫set了,叫zset。 概述 SortedSet又叫zset,它是Redis提供的特殊数据类型,是一种特殊…...
云原生之深入解析K8S 1.27新特性如何简化状态服务跨集群平滑迁移
一、背景 Kubernetes v1.26 为 StatefulSet 引入了一个新的 Alpha 级别特性,可以控制 Pod 副本的序号。从 Kubernetes v1.27 开始,此特性进级到 Beta 阶段。序数可以从任意非负数开始, 那么该如何使用此功能呢?StatefulSet 序号为…...

鸿蒙OS:打破界限的操作系统新星
导言 鸿蒙OS(HarmonyOS)是华为公司为应对技术封锁而推出的分布式操作系统,其背后蕴含着华为构建全球数字生活愿景的雄心。本文将深入剖析鸿蒙OS的起源、核心特性,并展望其未来在数字生态中的角色。 1. 背景与起源 华为的…...

预测性维护在汽车制造行业中的应用
汽车制造行业是一个高度复杂和精细化的领域,依赖于各种设备来完成生产流程。这些设备包括机械装配线、焊接机器人、喷涂设备、传送带等。然而,这些设备在长时间运行中不可避免地会遇到各种故障,给生产进程带来延误和成本增加。为了应对这一挑…...

分布式链路追踪 —— 基于Dubbo的traceId追踪传递
文章目录 原文链接RpcContext 上下文对象Dubbo 过滤器(Filter)对象基于Dubbo的traceId追踪传递实现 原文链接 RpcContext 上下文对象 在实现 Dubbo 调用之间的链路跟踪之前,先简单了解 RpcContext 上下文对象和 Filter 过滤器对象ÿ…...

【uniapp小程序-上拉加载】
在需要上拉加载的页面的page.json上添加红框框里面的 onReachBottom() {if(this.commentCurrent<this.commentTotal){this.commentCurrent 1; this.commentList();this.status loading;}else{this.status ;} }, methods:{commentList(){let params {courseid:this.cour…...
ubuntu添加路由
ip route show 查看当前路由表 sudo ip route add /mask via 添加一条路由 目标ip 1.1.1.1/100 下一跳 2.2.2.2 sudo ip route add 1.1.1.1/100 via 2.2.2.2 dev ens160 proto static metric 100这是一条Linux命令,用于添加一个静态路由。具体含义如下࿱…...

python图像二值化处理
目录 1、双峰法 2、P参数法 3、迭代法 4、OTSU法 图像的二值化处理是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。二值化是图像分割的一种最简单的方法,可以把灰度图像转换成二值图像。具体实现是将大…...

4.配置系统时钟思路及方法
前言: 比起之前用过的三星的猎户座4412芯片,STM32F4的系统时钟可以说是小巫见大巫,首先我们需要清晰时钟产生的原理:几乎大多数的芯片都是由晶振产生一个比较低频的频率,然后通过若干个PLL得到单片机能承受的频率&…...

使用openMVS库,在VS2022中启用c++17标准编译仍然报错
使用openMVS库,在VS2022中启用c17标准编译仍然报错 现象 项目中引用了某些开源库(例如openmvs2.1.0),编译时要求启用编译器对c17的支持。 没问题!大家都知道在下图所示的位置调整C语言标准: 但是&#…...

uniGUI之上传文件UniFileUploadButton
TUniFileUploadButton主要属性: Filter: 文件类型过滤,有图片image/* audio/* video/*三种过滤 MaxAllowedSize: 设置文件最大上传尺寸; Message:标题以及消息文本,可翻译成中文 TUniFileUploadButton控件 支持多…...

福德植保无人机工厂:创新科技与绿色农业的完美结合
亲爱的读者们,欢迎来到福德植保无人机工厂的世界。这里,科技与农业的完美结合为我们描绘出一幅未来农业的新篇章。福德植保无人机工厂作为行业的领军者,以其领先的无人机技术,创新的理念,为我们展示了一种全新的农业服…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...