当前位置: 首页 > news >正文

4.配置系统时钟思路及方法

 前言:

         比起之前用过的三星的猎户座4412芯片,STM32F4的系统时钟可以说是小巫见大巫,首先我们需要清晰时钟产生的原理:几乎大多数的芯片都是由晶振产生一个比较低频的频率,然后通过若干个PLL得到单片机能承受的频率(作为主频),再通过其他手段将PLL出来的频率降频分给其他外设使用。一个时钟树一般先对复杂,我们先调出主频(及编程好时钟源、PLL倍频这一部分)其他的之后再说,如此编程才不会太复杂。

        实际上这个一般厂家会给一个配置文件的,但是如果要自己做些超频之类的操作,就要彻底掌握时钟树的配置了,见人见智,追求技术的这个内容是逃不掉的。

        编程思路:1.PLL倍频因子配置 2..PLL时钟源激活和切换(上电后单片机会选择一个默认的时钟源,可能是晶振也可能是内部RC电路产生的频率) 3.切换系统时钟

时钟资源概览:

        下面先看一下我们这个F4的系统时钟资源,查看手册可知系统复位后是默认选择HSI这个内部RC电路产生的时钟作为这个单片机的系统时钟,但是我们要的是PLL产生的时钟。

        下面看手册PLL配置的说明(可以把时钟树截图出来作参考,不过主要编程还是靠手册的文字描述),可知RCC_PLLCFGR 可以用来配置PLL (PLLI2S可以先不管,先搞出主频再说),那就配置它吧。寄存器就不放出来了,自己看手册,这里给出寄存器各个位的配置值及解释

RCC_PLLCFGR寄存器配置

可见:
PLL = VCO / PLLP
VCO = PLL时钟源*(PLLN / PLLM)
一共涉及P / N / M 三个因子,以及PLL时钟源。
PLL就是我们要选的系统时钟,PLL = 168M,如果PLLP选的是2,那么VCO就得是168*2 = 336 。VCO是336,我们的PLL时钟源如果选的是外部晶振(探索者这个开发板上晶振是8M),那么PLLN/PLLM就得等于 VCO / PLL时钟源 = 336 / 8 = 42 ,所以PLLN除以PLLM必须是等于42,PLLN配置为336(可以在192和432这个数值间任意取),则PLLM配置为 336 / 42 = 8 .分频因子就搞定了。
下面开始配置 RCC_PLLCFGR
bit[5:0]:    设置PLLM为8,即0x8<<0
bit[14:6]:  设置PLLN为336,即336<<6
bit[17:16]:设置PLLP为2,即0<<16
bit[22]:     设置PLL和PLLI2S时钟源,设为1<<22,选择HES晶振
bit[27:24]:设置USB OTG之类的时钟,随便设一个,0x7<<24
其他使用默认值,编程如下:
RCC->PLLCFGR = 0x24003010 ;//复位值
RCC->PLLCFGR = 0x7<<24 | 1<<22 | 0<<16 | 336<<6 | 0x8<<0 ;
这样PLL就配置好了,PLL的时钟源我们选择的是HES,它还没有激活,所以 在PLL配置这一步之前,还需要将HSE激活

RCC_CR寄存器配置

查看手册HSE部分,可知要换时钟源要操作RCC_CR寄存器,时钟中断我们不需要。
同样,配置寄存器RCC_CR:(真真苦力活~)
bit[0]:    HSI的开关,这个呢暂时还不能关闭,要让HSE生效之后才能关闭,不然单片机一个时钟都没有没法工作。
bit[1]:    HSI的状态 1是ok,0是不ok
bit[16]:  HSE的开关,置为1<<16,打开
bit[17]:  HSE的状态,它就绪之后才能配置PLL,配置完PLL才能切换系统时钟(HSI时钟---->>PLL时钟)
bit[18]:  HSE时钟旁路,这个要关掉,因为我们要用的是HSE晶振,配置为0<<18
bit[24]:  PLL的开关,这个还没配置好之前要关掉
bit[25]:PLL是否稳定的标志
其他不管,RCC->CR复位时的默认值是 让HSI正常工作的,其他都是0,所以不改动它原有的,在它原有的值基础上进行幅值
1.配置使得HSE开始工作:
RCC->CR | = 1<<16;
u16 retry=0;//这个只是提供短暂延时的变量
while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了
if(retry==0X1FFF)status=1;    //当然如果超过了一定时间也会跳出,表示HSE无法就绪

2.打开PLL并等待其稳定

RCC->CR|=1<<24;			//打开主PLL
while((RCC->CR&(1<<25))==0);//等待PLL准备好 

使PLL倍频出很高的频率

有了上面的东西,我们就可以使PLL倍频出很高的频率了,结合上面两个寄存器:

RCC->PLLCFGR = 0x7<<24 | 1<<22 | 0<<16 | 336<<6 | 0x8<<0 ;//配置PLL倍频因子RCC->CR | = 1<<16;//激活HSE晶振
u16 retry=0;//这个只是提供短暂延时的变量
while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了
if(retry==0X1FFF)status=1; else{//激活HSE完成了RCC->CR|=1<<24;			//打开主PLLwhile((RCC->CR&(1<<25))==0);//PLL稳定}

现在PLL理论上已经有了晶振倍频后的频率了,下面切换PLL作为系统时钟:

切换PLL作为系统时钟

查看手册,知道RCC_CFGR是管这个事的:再一波嘎嘎配置

bit[1:0]:0x2<<0        切换PLL作为系统时钟

bit[3:2]:这两个位可以读出是否切换完成,如果读出来是0x2就是切换成PLL成功

bit[7:4]:这四个位是配置AHB分频的,我记得是不分频的,设为0000 即0x0<<4

bit[12:10]: 这三个位是配置APB1分频的 设为4分频,即0x5<<10

bit[15:13]:这三个位是配置APB2分频的 设为2分频,即0x4<<13

bit[20:16]:这五个位是配置RTC分频的 可以先随便设一个设为HSE/2,即0x2<<16

其他不用管


 

RCC_CFGR = 0;//清零RCC_CFGR = 0x2<<16 | 0x4<<13 | 0x5<<10 | 0x0<<4 | 0x2<<0 ;//切换PLL为系统时钟并且设置其他分频while((RCC->CFGR&(3<<2))!=(2<<2));//等待主PLL作为系统时钟成功. 

这样,综合上面所有的代码就是:

    u16 retry=0;//这个只是提供短暂延时的变量u8 status=0;   //按照上面的分析思路,编程流程就是://1.配置PLL倍频因子RCC->PLLCFGR = 0x7<<24 | 1<<22 |0<<16 |336<<6 |0x8<<0 ;//2.激活HSE晶振RCC->CR |= 1<<16;while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了if(retry==0X1FFF)status=1;else{//激活HSE完成了//3.打开PLL等待PLL输出稳定RCC->CR|=1<<24;			while((RCC->CR&(1<<25))==0);//4.切换PLL输出为系统时钟RCC->CFGR = 0;//清零RCC->CFGR =0x2<<16 |0x4<<13 | 0x5<<10 | 0x0<<4 |0x2<<0;//切换PLL为系统时钟并且设置其他分频while((RCC->CFGR&(3<<2))!=(2<<2));//等待主PLL作为系统时钟成功.现在主频是168M了}

验证测试:

下面可以用串口来打印,验证是不是设置完成。

可见是ok了的~说明上面的系统时钟配置没问题。main函数

疑难杂症:

如果你的整个main函数是这样的:是配置完时钟后也是没法正常工作的

#include "sys.h"
#include "usart.h" 
#include "delay.h" u16 myconut;
//systick中断服务函数,使用OS时用到
void SysTick_Handler(void)
{	myconut++;if(myconut>=1000){myconut=0;printf("hello\r\n");}}int main(void)
{ u8 t=0;u16 retry=0;//这个只是提供短暂延时的变量u8 status=0;//按照上面的分析思路,编程流程就是://1.配置PLL倍频因子RCC->PLLCFGR = 0x7<<24 | 1<<22 |0<<16 |336<<6 |0x8<<0 ;//2.激活HSE晶振RCC->CR |= 1<<16;while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了if(retry==0X1FFF)status=1;else{//激活HSE完成了//3.打开PLL等待PLL输出稳定RCC->CR|=1<<24;			while((RCC->CR&(1<<25))==0);//4.切换PLL输出为系统时钟RCC->CFGR = 0;//清零RCC->CFGR =0x2<<16 |0x4<<13 | 0x5<<10 | 0x0<<4 |0x2<<0;//切换PLL为系统时钟并且设置其他分频while((RCC->CFGR&(3<<2))!=(2<<2));//等待主PLL作为系统时钟成功.现在主频是168M了}delay_init(168);		//初始化延时函数NVIC_SetPriorityGrouping(2);SysTick_Config(168000);//1ms中断一次NVIC_EnableIRQ(SysTick_IRQn);uart_init(84,115200);	//串口初始化为115200while(1){}
}

原因是缺少了这样几行关于CPU的代码:将它加在时钟配置代码的上方即可正常运行了

    	FLASH->ACR|=1<<8;		//指令预取使能.FLASH->ACR|=1<<9;		//指令cache使能.FLASH->ACR|=1<<10;		//数据cache使能.FLASH->ACR|=5<<0;		//5个CPU等待周期. 

        正点原子是把它放在时钟配置里的,我也不知道为啥,但是我觉得它和时钟配置是没什么关系的,应该是另一部分的知识。正点原子时钟配置中还有这样两句关于电源的代码,我实测去掉也是可以的,不过应该还是加上比较好,但是时钟配置的部分手册没有提到,我也就没有在上面说,以免它出现的很突兀。同样要加的话加在时钟配置代码之前即可。

		RCC->APB1ENR|=1<<28;	//电源接口时钟使能PWR->CR|=3<<14; 		//高性能模式,时钟可到168Mhz

完事了~系统时钟就是这样配置啦,这个算是简单的,像能跑linux的那种芯片,就得依靠厂家给的来写或者修改了,自己写的总有不到位的地方~

整个main.c代码如下:

#include "sys.h"
#include "usart.h" 
#include "delay.h" 
//ALIENTEK 探索者STM32F407开发板 实验0
//新建工程实验  
//技术支持:www.openedv.com
//广州市星翼电子科技有限公司
u16 myconut;
//systick中断服务函数,使用OS时用到
void SysTick_Handler(void)
{	myconut++;if(myconut>=1000){myconut=0;printf("hello\r\n");}}int main(void)
{ u8 t=0;//plln,pllm,pllp,pllq//Stm32_Clock_Init(336,8,2,7);//设置时钟,168Mhzu16 retry=0;//这个只是提供短暂延时的变量u8 status=0;//CPU相关的初始化FLASH->ACR|=1<<8;		//指令预取使能.FLASH->ACR|=1<<9;		//指令cache使能.FLASH->ACR|=1<<10;		//数据cache使能.FLASH->ACR|=5<<0;		//5个CPU等待周期. //电源相关的初始化RCC->APB1ENR|=1<<28;	//电源接口时钟使能PWR->CR|=3<<14; 		//高性能模式,时钟可到168Mhz//按照博客的分析思路,系统时钟配置的编程流程就是://1.配置PLL倍频因子RCC->PLLCFGR = 0x7<<24 | 1<<22 |0<<16 |336<<6 |0x8<<0 ;//2.激活HSE晶振RCC->CR |= 1<<16;while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了if(retry==0X1FFF)status=1;else{//激活HSE完成了//3.打开PLL等待PLL输出稳定RCC->CR|=1<<24;			while((RCC->CR&(1<<25))==0);//4.切换PLL输出为系统时钟RCC->CFGR = 0;//清零RCC->CFGR =0x2<<16 |0x4<<13 | 0x5<<10 | 0x0<<4 |0x2<<0;//切换PLL为系统时钟并且设置其他分频while((RCC->CFGR&(3<<2))!=(2<<2));//等待主PLL作为系统时钟成功.现在主频是168M了}delay_init(168);		//初始化延时函数NVIC_SetPriorityGrouping(2);SysTick_Config(168000);//1ms中断一次NVIC_EnableIRQ(SysTick_IRQn);uart_init(84,115200);	//串口初始化为115200while(1){}
}

相关文章:

4.配置系统时钟思路及方法

前言&#xff1a; 比起之前用过的三星的猎户座4412芯片&#xff0c;STM32F4的系统时钟可以说是小巫见大巫&#xff0c;首先我们需要清晰时钟产生的原理&#xff1a;几乎大多数的芯片都是由晶振产生一个比较低频的频率&#xff0c;然后通过若干个PLL得到单片机能承受的频率&…...

使用openMVS库,在VS2022中启用c++17标准编译仍然报错

使用openMVS库&#xff0c;在VS2022中启用c17标准编译仍然报错 现象 项目中引用了某些开源库&#xff08;例如openmvs2.1.0&#xff09;&#xff0c;编译时要求启用编译器对c17的支持。 没问题&#xff01;大家都知道在下图所示的位置调整C语言标准&#xff1a; 但是&#…...

uniGUI之上传文件UniFileUploadButton

TUniFileUploadButton主要属性&#xff1a; Filter: 文件类型过滤&#xff0c;有图片image/* audio/* video/*三种过滤 MaxAllowedSize: 设置文件最大上传尺寸&#xff1b; Message&#xff1a;标题以及消息文本&#xff0c;可翻译成中文 TUniFileUploadButton控件 支持多…...

福德植保无人机工厂:创新科技与绿色农业的完美结合

亲爱的读者们&#xff0c;欢迎来到福德植保无人机工厂的世界。这里&#xff0c;科技与农业的完美结合为我们描绘出一幅未来农业的新篇章。福德植保无人机工厂作为行业的领军者&#xff0c;以其领先的无人机技术&#xff0c;创新的理念&#xff0c;为我们展示了一种全新的农业服…...

JsRpc技术服务搭建,最简单的JSRPC,Flask+undetected-chromedriver

只需10来行代码快速实现JSRpc&#xff0c;最简单的JSRPC 使用Flask和undetected-chromedriver快速实现JsRpc 推荐Python版本3.7.x及以上&#xff0c;需要pip安装 pip install Flask pip install undetected-chromedriver __author__ jiuLiang __email__ "jiuliangef…...

<优化接口设计的思路>:接口安全

前言 一、接口安全的方式   1. 身份认证&#xff0c;鉴别客户端   2. 请求过程鉴权&#xff0c;防止请求被篡改   3. 访问控制&#xff0c;即控制客户端对API的访问权限 前言 某家电商平台上&#xff0c;用户可以通过客户端发起购物请求&#xff0c;并对所选商品进行下…...

Gitee基础知识

目录 1-gitee 1.1gitee介绍 1.2git与gitee的关系 1.3在国内为什么选择Gitee 2-注册与创建远程仓库 2.1注册 2.2创建远程仓库 2.3配置ssh公钥 2.3.1公钥的生成方法&#xff1a; 2.3.2 在gitee中配置公钥 2.3.4验证公钥 3-添加与推送远程仓库master 3.1基本命令…...

网络空间搜索引擎- FOFA的使用技巧总结

简介 FOFA是一款网络空间测绘的搜索引擎&#xff0c;旨在帮助用户以搜索的方式查找公网上的互联网资产。 FOFA的查询方式类似于谷歌或百度&#xff0c;用户可以输入关键词来匹配包含该关键词的数据。不同的是&#xff0c;这些数据不仅包括像谷歌或百度一样的网页&#xff0c;还…...

用户行为分析遇到的问题-ubantu16,hadoop3.1.3

用户行为分析传送门 我的版本 ubantu16 hadoop 3.1.3 habse 2.2.2 hive3.1.3 zookeeper3.8.3 sqoop 1.46/1.47 我sqoop把MySQL数据往hbase导数据时候有问题 重磅&#xff1a;大数据课程实验案例&#xff1a;网站用户行为分析&#xff08;免费共享&#xff09; 用户行为分析-小…...

camera曝光时间

曝光和传感器读数 相机上的图像采集过程由两个不同的部分组成。第一部分是曝光。曝光完成后&#xff0c;第二步就是从传感器的寄存器中读取数据并传输&#xff08;readout&#xff09;。 曝光&#xff1a;曝光是图像传感器进行感光的一个过程&#xff0c;相机曝光时间&#xf…...

Vue 项目中使用 debugger 在 chrome 谷歌浏览器中失效以及 console.log 指向去了 vue.js 代码

问题 今天在代码里面输出 console.log 信息直接指向了 vue.js&#xff0c;并且代码里面写了 debgger 也不生效 解决 f12 找到浏览器的这个设置图标 找到这个 ignore list 的 custom exclusion rules 取消掉 /node_modules/|/bower_components/ 这样就正常了...

翻译: ChatGPT Token消耗粗略计算英文就是除以四分之三

在这个视频中&#xff0c;我想带你快速浏览一些例子&#xff0c;以建立对在软件应用中使用大型语言模型的实际成本的直观感受。让我们来看看。这是一些示例价格&#xff0c;用于从不同的大型语言模型获取提示和回应&#xff0c;这些模型对开发者可用。即&#xff0c;如果你在你…...

【线性代数】期末速通!

1. 行列式的性质 1.1 求一个行列式的值 特殊地&#xff0c;对角线左下全为0&#xff0c;结果为对角线乘积。行 r 列 c 1.2 性质 某行&#xff08;列&#xff09;加上或减去另一行&#xff08;列&#xff09;的几倍&#xff0c;行列式不变某行&#xff08;列&#xff09;乘 …...

速盾网络:业务卓越,数字安全的领先者

在数字时代的浪潮中&#xff0c;业务成功需要强大的数字基石。速盾网络以其出色的CDN加速、高防IP、SDK游戏盾和抗DDoS攻击等业务&#xff0c;成为业界领先的数字安全保障者&#xff0c;为您的业务提供全方位的支持与保护。 CDN加速&#xff1a;业务飞跃的翅膀 速盾网络以全球…...

Python 全栈体系【四阶】(七)

第四章 机器学习 六、多项式回归 1. 什么是多项式回归 线性回归适用于数据呈线性分布的回归问题。如果数据样本呈明显非线性分布&#xff0c;线性回归模型就不再适用&#xff08;下图左&#xff09;&#xff0c;而采用多项式回归可能更好&#xff08;下图右&#xff09;。例…...

智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蛾群算法4.实验参数设定5.算法结果6.参考文献7.MA…...

Tekton 克隆 git 仓库

Tekton 克隆 git仓库 介绍如何使用 Tektonhub 官方 git-clone task 克隆 github 上的源码到本地。 git-clone task yaml文件下载地址&#xff1a;https://hub.tekton.dev/tekton/task/git-clone 查看git-clone task yaml内容&#xff1a; 点击Install&#xff0c;选择一种…...

高通平台开发系列讲解(AI篇)SNPE工作流程介绍

文章目录 一、转换网络模型二、量化2.1、选择量化或非量化模型2.2、使用离线TensorFlow或Caffe模型2.3、使用非量化DLC初始化SNPE2.4、使用量化DLC初始化SNPE三、准备输入数据四、运行加载网络沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇章主要介绍SNPE模型工作…...

YoloV8改进策略:ASF-YOLO,结合了空间和尺度特征在小目标和密集目标场景有效涨点

摘要 本文提出了一种新型的Attentional Scale Sequence Fusion based You Only Look Once (YOLO)框架(ASF-YOLO),该框架结合了空间和尺度特征,以实现准确且快速的细胞实例分割。该框架建立在YOLO分割框架之上,采用Scale Sequence Feature Fusion (SSFF)模块增强网络的多尺…...

OpenCV-8RGB和BGR颜色空间

一. RGB和BGR 最常见的色彩空间就是RGB&#xff0c;人眼也是基于RGB的色彩空间去分辨颜色。 OpenCV默认使用的是BGR. BGR和RGB色彩空间的区别在于图片在色彩通道上的排列顺序不同。 二.HSV, HSL和YUV 1.HSV(HSB) OpenCV用的最多的色彩空间是HSV. Hue&#xff1a;色相&…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

MySQL的pymysql操作

本章是MySQL的最后一章&#xff0c;MySQL到此完结&#xff0c;下一站Hadoop&#xff01;&#xff01;&#xff01; 这章很简单&#xff0c;完整代码在最后&#xff0c;详细讲解之前python课程里面也有&#xff0c;感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

Unity VR/MR开发-VR开发与传统3D开发的差异

视频讲解链接&#xff1a;【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...

图解JavaScript原型:原型链及其分析 | JavaScript图解

​​ 忽略该图的细节&#xff08;如内存地址值没有用二进制&#xff09; 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么&#xff1a;保存在堆中一块区域&#xff0c;同时在栈中有一块区域保存其在堆中的地址&#xff08;也就是我们通常说的该变量指向谁&…...