4.配置系统时钟思路及方法
前言:
比起之前用过的三星的猎户座4412芯片,STM32F4的系统时钟可以说是小巫见大巫,首先我们需要清晰时钟产生的原理:几乎大多数的芯片都是由晶振产生一个比较低频的频率,然后通过若干个PLL得到单片机能承受的频率(作为主频),再通过其他手段将PLL出来的频率降频分给其他外设使用。一个时钟树一般先对复杂,我们先调出主频(及编程好时钟源、PLL倍频这一部分)其他的之后再说,如此编程才不会太复杂。
实际上这个一般厂家会给一个配置文件的,但是如果要自己做些超频之类的操作,就要彻底掌握时钟树的配置了,见人见智,追求技术的这个内容是逃不掉的。
编程思路:1.PLL倍频因子配置 2..PLL时钟源激活和切换(上电后单片机会选择一个默认的时钟源,可能是晶振也可能是内部RC电路产生的频率) 3.切换系统时钟
时钟资源概览:
下面先看一下我们这个F4的系统时钟资源,查看手册可知系统复位后是默认选择HSI这个内部RC电路产生的时钟作为这个单片机的系统时钟,但是我们要的是PLL产生的时钟。

下面看手册PLL配置的说明(可以把时钟树截图出来作参考,不过主要编程还是靠手册的文字描述),可知RCC_PLLCFGR 可以用来配置PLL (PLLI2S可以先不管,先搞出主频再说),那就配置它吧。寄存器就不放出来了,自己看手册,这里给出寄存器各个位的配置值及解释
RCC_PLLCFGR寄存器配置

RCC->PLLCFGR = 0x24003010 ;//复位值
RCC->PLLCFGR = 0x7<<24 | 1<<22 | 0<<16 | 336<<6 | 0x8<<0 ;
RCC_CR寄存器配置
RCC->CR | = 1<<16;
u16 retry=0;//这个只是提供短暂延时的变量
while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了
if(retry==0X1FFF)status=1; //当然如果超过了一定时间也会跳出,表示HSE无法就绪 2.打开PLL并等待其稳定
RCC->CR|=1<<24; //打开主PLL
while((RCC->CR&(1<<25))==0);//等待PLL准备好 使PLL倍频出很高的频率
有了上面的东西,我们就可以使PLL倍频出很高的频率了,结合上面两个寄存器:
RCC->PLLCFGR = 0x7<<24 | 1<<22 | 0<<16 | 336<<6 | 0x8<<0 ;//配置PLL倍频因子RCC->CR | = 1<<16;//激活HSE晶振
u16 retry=0;//这个只是提供短暂延时的变量
while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了
if(retry==0X1FFF)status=1; else{//激活HSE完成了RCC->CR|=1<<24; //打开主PLLwhile((RCC->CR&(1<<25))==0);//PLL稳定} 现在PLL理论上已经有了晶振倍频后的频率了,下面切换PLL作为系统时钟:
切换PLL作为系统时钟
查看手册,知道RCC_CFGR是管这个事的:再一波嘎嘎配置
bit[1:0]:0x2<<0 切换PLL作为系统时钟
bit[3:2]:这两个位可以读出是否切换完成,如果读出来是0x2就是切换成PLL成功
bit[7:4]:这四个位是配置AHB分频的,我记得是不分频的,设为0000 即0x0<<4
bit[12:10]: 这三个位是配置APB1分频的 设为4分频,即0x5<<10
bit[15:13]:这三个位是配置APB2分频的 设为2分频,即0x4<<13
bit[20:16]:这五个位是配置RTC分频的 可以先随便设一个设为HSE/2,即0x2<<16
其他不用管
即
RCC_CFGR = 0;//清零RCC_CFGR = 0x2<<16 | 0x4<<13 | 0x5<<10 | 0x0<<4 | 0x2<<0 ;//切换PLL为系统时钟并且设置其他分频while((RCC->CFGR&(3<<2))!=(2<<2));//等待主PLL作为系统时钟成功.
这样,综合上面所有的代码就是:
u16 retry=0;//这个只是提供短暂延时的变量u8 status=0; //按照上面的分析思路,编程流程就是://1.配置PLL倍频因子RCC->PLLCFGR = 0x7<<24 | 1<<22 |0<<16 |336<<6 |0x8<<0 ;//2.激活HSE晶振RCC->CR |= 1<<16;while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了if(retry==0X1FFF)status=1;else{//激活HSE完成了//3.打开PLL等待PLL输出稳定RCC->CR|=1<<24; while((RCC->CR&(1<<25))==0);//4.切换PLL输出为系统时钟RCC->CFGR = 0;//清零RCC->CFGR =0x2<<16 |0x4<<13 | 0x5<<10 | 0x0<<4 |0x2<<0;//切换PLL为系统时钟并且设置其他分频while((RCC->CFGR&(3<<2))!=(2<<2));//等待主PLL作为系统时钟成功.现在主频是168M了}
验证测试:
下面可以用串口来打印,验证是不是设置完成。

可见是ok了的~说明上面的系统时钟配置没问题。main函数
疑难杂症:
如果你的整个main函数是这样的:是配置完时钟后也是没法正常工作的
#include "sys.h"
#include "usart.h"
#include "delay.h" u16 myconut;
//systick中断服务函数,使用OS时用到
void SysTick_Handler(void)
{ myconut++;if(myconut>=1000){myconut=0;printf("hello\r\n");}}int main(void)
{ u8 t=0;u16 retry=0;//这个只是提供短暂延时的变量u8 status=0;//按照上面的分析思路,编程流程就是://1.配置PLL倍频因子RCC->PLLCFGR = 0x7<<24 | 1<<22 |0<<16 |336<<6 |0x8<<0 ;//2.激活HSE晶振RCC->CR |= 1<<16;while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了if(retry==0X1FFF)status=1;else{//激活HSE完成了//3.打开PLL等待PLL输出稳定RCC->CR|=1<<24; while((RCC->CR&(1<<25))==0);//4.切换PLL输出为系统时钟RCC->CFGR = 0;//清零RCC->CFGR =0x2<<16 |0x4<<13 | 0x5<<10 | 0x0<<4 |0x2<<0;//切换PLL为系统时钟并且设置其他分频while((RCC->CFGR&(3<<2))!=(2<<2));//等待主PLL作为系统时钟成功.现在主频是168M了}delay_init(168); //初始化延时函数NVIC_SetPriorityGrouping(2);SysTick_Config(168000);//1ms中断一次NVIC_EnableIRQ(SysTick_IRQn);uart_init(84,115200); //串口初始化为115200while(1){}
}
原因是缺少了这样几行关于CPU的代码:将它加在时钟配置代码的上方即可正常运行了
FLASH->ACR|=1<<8; //指令预取使能.FLASH->ACR|=1<<9; //指令cache使能.FLASH->ACR|=1<<10; //数据cache使能.FLASH->ACR|=5<<0; //5个CPU等待周期.
正点原子是把它放在时钟配置里的,我也不知道为啥,但是我觉得它和时钟配置是没什么关系的,应该是另一部分的知识。正点原子时钟配置中还有这样两句关于电源的代码,我实测去掉也是可以的,不过应该还是加上比较好,但是时钟配置的部分手册没有提到,我也就没有在上面说,以免它出现的很突兀。同样要加的话加在时钟配置代码之前即可。
RCC->APB1ENR|=1<<28; //电源接口时钟使能PWR->CR|=3<<14; //高性能模式,时钟可到168Mhz
完事了~系统时钟就是这样配置啦,这个算是简单的,像能跑linux的那种芯片,就得依靠厂家给的来写或者修改了,自己写的总有不到位的地方~
整个main.c代码如下:
#include "sys.h"
#include "usart.h"
#include "delay.h"
//ALIENTEK 探索者STM32F407开发板 实验0
//新建工程实验
//技术支持:www.openedv.com
//广州市星翼电子科技有限公司
u16 myconut;
//systick中断服务函数,使用OS时用到
void SysTick_Handler(void)
{ myconut++;if(myconut>=1000){myconut=0;printf("hello\r\n");}}int main(void)
{ u8 t=0;//plln,pllm,pllp,pllq//Stm32_Clock_Init(336,8,2,7);//设置时钟,168Mhzu16 retry=0;//这个只是提供短暂延时的变量u8 status=0;//CPU相关的初始化FLASH->ACR|=1<<8; //指令预取使能.FLASH->ACR|=1<<9; //指令cache使能.FLASH->ACR|=1<<10; //数据cache使能.FLASH->ACR|=5<<0; //5个CPU等待周期. //电源相关的初始化RCC->APB1ENR|=1<<28; //电源接口时钟使能PWR->CR|=3<<14; //高性能模式,时钟可到168Mhz//按照博客的分析思路,系统时钟配置的编程流程就是://1.配置PLL倍频因子RCC->PLLCFGR = 0x7<<24 | 1<<22 |0<<16 |336<<6 |0x8<<0 ;//2.激活HSE晶振RCC->CR |= 1<<16;while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了if(retry==0X1FFF)status=1;else{//激活HSE完成了//3.打开PLL等待PLL输出稳定RCC->CR|=1<<24; while((RCC->CR&(1<<25))==0);//4.切换PLL输出为系统时钟RCC->CFGR = 0;//清零RCC->CFGR =0x2<<16 |0x4<<13 | 0x5<<10 | 0x0<<4 |0x2<<0;//切换PLL为系统时钟并且设置其他分频while((RCC->CFGR&(3<<2))!=(2<<2));//等待主PLL作为系统时钟成功.现在主频是168M了}delay_init(168); //初始化延时函数NVIC_SetPriorityGrouping(2);SysTick_Config(168000);//1ms中断一次NVIC_EnableIRQ(SysTick_IRQn);uart_init(84,115200); //串口初始化为115200while(1){}
}
相关文章:
4.配置系统时钟思路及方法
前言: 比起之前用过的三星的猎户座4412芯片,STM32F4的系统时钟可以说是小巫见大巫,首先我们需要清晰时钟产生的原理:几乎大多数的芯片都是由晶振产生一个比较低频的频率,然后通过若干个PLL得到单片机能承受的频率&…...
使用openMVS库,在VS2022中启用c++17标准编译仍然报错
使用openMVS库,在VS2022中启用c17标准编译仍然报错 现象 项目中引用了某些开源库(例如openmvs2.1.0),编译时要求启用编译器对c17的支持。 没问题!大家都知道在下图所示的位置调整C语言标准: 但是&#…...
uniGUI之上传文件UniFileUploadButton
TUniFileUploadButton主要属性: Filter: 文件类型过滤,有图片image/* audio/* video/*三种过滤 MaxAllowedSize: 设置文件最大上传尺寸; Message:标题以及消息文本,可翻译成中文 TUniFileUploadButton控件 支持多…...
福德植保无人机工厂:创新科技与绿色农业的完美结合
亲爱的读者们,欢迎来到福德植保无人机工厂的世界。这里,科技与农业的完美结合为我们描绘出一幅未来农业的新篇章。福德植保无人机工厂作为行业的领军者,以其领先的无人机技术,创新的理念,为我们展示了一种全新的农业服…...
JsRpc技术服务搭建,最简单的JSRPC,Flask+undetected-chromedriver
只需10来行代码快速实现JSRpc,最简单的JSRPC 使用Flask和undetected-chromedriver快速实现JsRpc 推荐Python版本3.7.x及以上,需要pip安装 pip install Flask pip install undetected-chromedriver __author__ jiuLiang __email__ "jiuliangef…...
<优化接口设计的思路>:接口安全
前言 一、接口安全的方式 1. 身份认证,鉴别客户端 2. 请求过程鉴权,防止请求被篡改 3. 访问控制,即控制客户端对API的访问权限 前言 某家电商平台上,用户可以通过客户端发起购物请求,并对所选商品进行下…...
Gitee基础知识
目录 1-gitee 1.1gitee介绍 1.2git与gitee的关系 1.3在国内为什么选择Gitee 2-注册与创建远程仓库 2.1注册 2.2创建远程仓库 2.3配置ssh公钥 2.3.1公钥的生成方法: 2.3.2 在gitee中配置公钥 2.3.4验证公钥 3-添加与推送远程仓库master 3.1基本命令…...
网络空间搜索引擎- FOFA的使用技巧总结
简介 FOFA是一款网络空间测绘的搜索引擎,旨在帮助用户以搜索的方式查找公网上的互联网资产。 FOFA的查询方式类似于谷歌或百度,用户可以输入关键词来匹配包含该关键词的数据。不同的是,这些数据不仅包括像谷歌或百度一样的网页,还…...
用户行为分析遇到的问题-ubantu16,hadoop3.1.3
用户行为分析传送门 我的版本 ubantu16 hadoop 3.1.3 habse 2.2.2 hive3.1.3 zookeeper3.8.3 sqoop 1.46/1.47 我sqoop把MySQL数据往hbase导数据时候有问题 重磅:大数据课程实验案例:网站用户行为分析(免费共享) 用户行为分析-小…...
camera曝光时间
曝光和传感器读数 相机上的图像采集过程由两个不同的部分组成。第一部分是曝光。曝光完成后,第二步就是从传感器的寄存器中读取数据并传输(readout)。 曝光:曝光是图像传感器进行感光的一个过程,相机曝光时间…...
Vue 项目中使用 debugger 在 chrome 谷歌浏览器中失效以及 console.log 指向去了 vue.js 代码
问题 今天在代码里面输出 console.log 信息直接指向了 vue.js,并且代码里面写了 debgger 也不生效 解决 f12 找到浏览器的这个设置图标 找到这个 ignore list 的 custom exclusion rules 取消掉 /node_modules/|/bower_components/ 这样就正常了...
翻译: ChatGPT Token消耗粗略计算英文就是除以四分之三
在这个视频中,我想带你快速浏览一些例子,以建立对在软件应用中使用大型语言模型的实际成本的直观感受。让我们来看看。这是一些示例价格,用于从不同的大型语言模型获取提示和回应,这些模型对开发者可用。即,如果你在你…...
【线性代数】期末速通!
1. 行列式的性质 1.1 求一个行列式的值 特殊地,对角线左下全为0,结果为对角线乘积。行 r 列 c 1.2 性质 某行(列)加上或减去另一行(列)的几倍,行列式不变某行(列)乘 …...
速盾网络:业务卓越,数字安全的领先者
在数字时代的浪潮中,业务成功需要强大的数字基石。速盾网络以其出色的CDN加速、高防IP、SDK游戏盾和抗DDoS攻击等业务,成为业界领先的数字安全保障者,为您的业务提供全方位的支持与保护。 CDN加速:业务飞跃的翅膀 速盾网络以全球…...
Python 全栈体系【四阶】(七)
第四章 机器学习 六、多项式回归 1. 什么是多项式回归 线性回归适用于数据呈线性分布的回归问题。如果数据样本呈明显非线性分布,线性回归模型就不再适用(下图左),而采用多项式回归可能更好(下图右)。例…...
智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蛾群算法4.实验参数设定5.算法结果6.参考文献7.MA…...
Tekton 克隆 git 仓库
Tekton 克隆 git仓库 介绍如何使用 Tektonhub 官方 git-clone task 克隆 github 上的源码到本地。 git-clone task yaml文件下载地址:https://hub.tekton.dev/tekton/task/git-clone 查看git-clone task yaml内容: 点击Install,选择一种…...
高通平台开发系列讲解(AI篇)SNPE工作流程介绍
文章目录 一、转换网络模型二、量化2.1、选择量化或非量化模型2.2、使用离线TensorFlow或Caffe模型2.3、使用非量化DLC初始化SNPE2.4、使用量化DLC初始化SNPE三、准备输入数据四、运行加载网络沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇章主要介绍SNPE模型工作…...
YoloV8改进策略:ASF-YOLO,结合了空间和尺度特征在小目标和密集目标场景有效涨点
摘要 本文提出了一种新型的Attentional Scale Sequence Fusion based You Only Look Once (YOLO)框架(ASF-YOLO),该框架结合了空间和尺度特征,以实现准确且快速的细胞实例分割。该框架建立在YOLO分割框架之上,采用Scale Sequence Feature Fusion (SSFF)模块增强网络的多尺…...
OpenCV-8RGB和BGR颜色空间
一. RGB和BGR 最常见的色彩空间就是RGB,人眼也是基于RGB的色彩空间去分辨颜色。 OpenCV默认使用的是BGR. BGR和RGB色彩空间的区别在于图片在色彩通道上的排列顺序不同。 二.HSV, HSL和YUV 1.HSV(HSB) OpenCV用的最多的色彩空间是HSV. Hue:色相&…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
