4.配置系统时钟思路及方法
前言:
比起之前用过的三星的猎户座4412芯片,STM32F4的系统时钟可以说是小巫见大巫,首先我们需要清晰时钟产生的原理:几乎大多数的芯片都是由晶振产生一个比较低频的频率,然后通过若干个PLL得到单片机能承受的频率(作为主频),再通过其他手段将PLL出来的频率降频分给其他外设使用。一个时钟树一般先对复杂,我们先调出主频(及编程好时钟源、PLL倍频这一部分)其他的之后再说,如此编程才不会太复杂。
实际上这个一般厂家会给一个配置文件的,但是如果要自己做些超频之类的操作,就要彻底掌握时钟树的配置了,见人见智,追求技术的这个内容是逃不掉的。
编程思路:1.PLL倍频因子配置 2..PLL时钟源激活和切换(上电后单片机会选择一个默认的时钟源,可能是晶振也可能是内部RC电路产生的频率) 3.切换系统时钟
时钟资源概览:
下面先看一下我们这个F4的系统时钟资源,查看手册可知系统复位后是默认选择HSI这个内部RC电路产生的时钟作为这个单片机的系统时钟,但是我们要的是PLL产生的时钟。
下面看手册PLL配置的说明(可以把时钟树截图出来作参考,不过主要编程还是靠手册的文字描述),可知RCC_PLLCFGR 可以用来配置PLL (PLLI2S可以先不管,先搞出主频再说),那就配置它吧。寄存器就不放出来了,自己看手册,这里给出寄存器各个位的配置值及解释
RCC_PLLCFGR寄存器配置
RCC->PLLCFGR = 0x24003010 ;//复位值
RCC->PLLCFGR = 0x7<<24 | 1<<22 | 0<<16 | 336<<6 | 0x8<<0 ;
RCC_CR寄存器配置

RCC->CR | = 1<<16;
u16 retry=0;//这个只是提供短暂延时的变量
while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了
if(retry==0X1FFF)status=1; //当然如果超过了一定时间也会跳出,表示HSE无法就绪
2.打开PLL并等待其稳定
RCC->CR|=1<<24; //打开主PLL
while((RCC->CR&(1<<25))==0);//等待PLL准备好
使PLL倍频出很高的频率
有了上面的东西,我们就可以使PLL倍频出很高的频率了,结合上面两个寄存器:
RCC->PLLCFGR = 0x7<<24 | 1<<22 | 0<<16 | 336<<6 | 0x8<<0 ;//配置PLL倍频因子RCC->CR | = 1<<16;//激活HSE晶振
u16 retry=0;//这个只是提供短暂延时的变量
while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了
if(retry==0X1FFF)status=1; else{//激活HSE完成了RCC->CR|=1<<24; //打开主PLLwhile((RCC->CR&(1<<25))==0);//PLL稳定}
现在PLL理论上已经有了晶振倍频后的频率了,下面切换PLL作为系统时钟:
切换PLL作为系统时钟
查看手册,知道RCC_CFGR是管这个事的:再一波嘎嘎配置
bit[1:0]:0x2<<0 切换PLL作为系统时钟
bit[3:2]:这两个位可以读出是否切换完成,如果读出来是0x2就是切换成PLL成功
bit[7:4]:这四个位是配置AHB分频的,我记得是不分频的,设为0000 即0x0<<4
bit[12:10]: 这三个位是配置APB1分频的 设为4分频,即0x5<<10
bit[15:13]:这三个位是配置APB2分频的 设为2分频,即0x4<<13
bit[20:16]:这五个位是配置RTC分频的 可以先随便设一个设为HSE/2,即0x2<<16
其他不用管
即
RCC_CFGR = 0;//清零RCC_CFGR = 0x2<<16 | 0x4<<13 | 0x5<<10 | 0x0<<4 | 0x2<<0 ;//切换PLL为系统时钟并且设置其他分频while((RCC->CFGR&(3<<2))!=(2<<2));//等待主PLL作为系统时钟成功.
这样,综合上面所有的代码就是:
u16 retry=0;//这个只是提供短暂延时的变量u8 status=0; //按照上面的分析思路,编程流程就是://1.配置PLL倍频因子RCC->PLLCFGR = 0x7<<24 | 1<<22 |0<<16 |336<<6 |0x8<<0 ;//2.激活HSE晶振RCC->CR |= 1<<16;while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了if(retry==0X1FFF)status=1;else{//激活HSE完成了//3.打开PLL等待PLL输出稳定RCC->CR|=1<<24; while((RCC->CR&(1<<25))==0);//4.切换PLL输出为系统时钟RCC->CFGR = 0;//清零RCC->CFGR =0x2<<16 |0x4<<13 | 0x5<<10 | 0x0<<4 |0x2<<0;//切换PLL为系统时钟并且设置其他分频while((RCC->CFGR&(3<<2))!=(2<<2));//等待主PLL作为系统时钟成功.现在主频是168M了}
验证测试:
下面可以用串口来打印,验证是不是设置完成。
可见是ok了的~说明上面的系统时钟配置没问题。main函数
疑难杂症:
如果你的整个main函数是这样的:是配置完时钟后也是没法正常工作的
#include "sys.h"
#include "usart.h"
#include "delay.h" u16 myconut;
//systick中断服务函数,使用OS时用到
void SysTick_Handler(void)
{ myconut++;if(myconut>=1000){myconut=0;printf("hello\r\n");}}int main(void)
{ u8 t=0;u16 retry=0;//这个只是提供短暂延时的变量u8 status=0;//按照上面的分析思路,编程流程就是://1.配置PLL倍频因子RCC->PLLCFGR = 0x7<<24 | 1<<22 |0<<16 |336<<6 |0x8<<0 ;//2.激活HSE晶振RCC->CR |= 1<<16;while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了if(retry==0X1FFF)status=1;else{//激活HSE完成了//3.打开PLL等待PLL输出稳定RCC->CR|=1<<24; while((RCC->CR&(1<<25))==0);//4.切换PLL输出为系统时钟RCC->CFGR = 0;//清零RCC->CFGR =0x2<<16 |0x4<<13 | 0x5<<10 | 0x0<<4 |0x2<<0;//切换PLL为系统时钟并且设置其他分频while((RCC->CFGR&(3<<2))!=(2<<2));//等待主PLL作为系统时钟成功.现在主频是168M了}delay_init(168); //初始化延时函数NVIC_SetPriorityGrouping(2);SysTick_Config(168000);//1ms中断一次NVIC_EnableIRQ(SysTick_IRQn);uart_init(84,115200); //串口初始化为115200while(1){}
}
原因是缺少了这样几行关于CPU的代码:将它加在时钟配置代码的上方即可正常运行了
FLASH->ACR|=1<<8; //指令预取使能.FLASH->ACR|=1<<9; //指令cache使能.FLASH->ACR|=1<<10; //数据cache使能.FLASH->ACR|=5<<0; //5个CPU等待周期.
正点原子是把它放在时钟配置里的,我也不知道为啥,但是我觉得它和时钟配置是没什么关系的,应该是另一部分的知识。正点原子时钟配置中还有这样两句关于电源的代码,我实测去掉也是可以的,不过应该还是加上比较好,但是时钟配置的部分手册没有提到,我也就没有在上面说,以免它出现的很突兀。同样要加的话加在时钟配置代码之前即可。
RCC->APB1ENR|=1<<28; //电源接口时钟使能PWR->CR|=3<<14; //高性能模式,时钟可到168Mhz
完事了~系统时钟就是这样配置啦,这个算是简单的,像能跑linux的那种芯片,就得依靠厂家给的来写或者修改了,自己写的总有不到位的地方~
整个main.c代码如下:
#include "sys.h"
#include "usart.h"
#include "delay.h"
//ALIENTEK 探索者STM32F407开发板 实验0
//新建工程实验
//技术支持:www.openedv.com
//广州市星翼电子科技有限公司
u16 myconut;
//systick中断服务函数,使用OS时用到
void SysTick_Handler(void)
{ myconut++;if(myconut>=1000){myconut=0;printf("hello\r\n");}}int main(void)
{ u8 t=0;//plln,pllm,pllp,pllq//Stm32_Clock_Init(336,8,2,7);//设置时钟,168Mhzu16 retry=0;//这个只是提供短暂延时的变量u8 status=0;//CPU相关的初始化FLASH->ACR|=1<<8; //指令预取使能.FLASH->ACR|=1<<9; //指令cache使能.FLASH->ACR|=1<<10; //数据cache使能.FLASH->ACR|=5<<0; //5个CPU等待周期. //电源相关的初始化RCC->APB1ENR|=1<<28; //电源接口时钟使能PWR->CR|=3<<14; //高性能模式,时钟可到168Mhz//按照博客的分析思路,系统时钟配置的编程流程就是://1.配置PLL倍频因子RCC->PLLCFGR = 0x7<<24 | 1<<22 |0<<16 |336<<6 |0x8<<0 ;//2.激活HSE晶振RCC->CR |= 1<<16;while(((RCC->CR&(1<<17))==0)&&(retry<0X1FFF))retry++;//跳出循环后说明HSE ok了if(retry==0X1FFF)status=1;else{//激活HSE完成了//3.打开PLL等待PLL输出稳定RCC->CR|=1<<24; while((RCC->CR&(1<<25))==0);//4.切换PLL输出为系统时钟RCC->CFGR = 0;//清零RCC->CFGR =0x2<<16 |0x4<<13 | 0x5<<10 | 0x0<<4 |0x2<<0;//切换PLL为系统时钟并且设置其他分频while((RCC->CFGR&(3<<2))!=(2<<2));//等待主PLL作为系统时钟成功.现在主频是168M了}delay_init(168); //初始化延时函数NVIC_SetPriorityGrouping(2);SysTick_Config(168000);//1ms中断一次NVIC_EnableIRQ(SysTick_IRQn);uart_init(84,115200); //串口初始化为115200while(1){}
}
相关文章:

4.配置系统时钟思路及方法
前言: 比起之前用过的三星的猎户座4412芯片,STM32F4的系统时钟可以说是小巫见大巫,首先我们需要清晰时钟产生的原理:几乎大多数的芯片都是由晶振产生一个比较低频的频率,然后通过若干个PLL得到单片机能承受的频率&…...

使用openMVS库,在VS2022中启用c++17标准编译仍然报错
使用openMVS库,在VS2022中启用c17标准编译仍然报错 现象 项目中引用了某些开源库(例如openmvs2.1.0),编译时要求启用编译器对c17的支持。 没问题!大家都知道在下图所示的位置调整C语言标准: 但是&#…...

uniGUI之上传文件UniFileUploadButton
TUniFileUploadButton主要属性: Filter: 文件类型过滤,有图片image/* audio/* video/*三种过滤 MaxAllowedSize: 设置文件最大上传尺寸; Message:标题以及消息文本,可翻译成中文 TUniFileUploadButton控件 支持多…...

福德植保无人机工厂:创新科技与绿色农业的完美结合
亲爱的读者们,欢迎来到福德植保无人机工厂的世界。这里,科技与农业的完美结合为我们描绘出一幅未来农业的新篇章。福德植保无人机工厂作为行业的领军者,以其领先的无人机技术,创新的理念,为我们展示了一种全新的农业服…...
JsRpc技术服务搭建,最简单的JSRPC,Flask+undetected-chromedriver
只需10来行代码快速实现JSRpc,最简单的JSRPC 使用Flask和undetected-chromedriver快速实现JsRpc 推荐Python版本3.7.x及以上,需要pip安装 pip install Flask pip install undetected-chromedriver __author__ jiuLiang __email__ "jiuliangef…...
<优化接口设计的思路>:接口安全
前言 一、接口安全的方式 1. 身份认证,鉴别客户端 2. 请求过程鉴权,防止请求被篡改 3. 访问控制,即控制客户端对API的访问权限 前言 某家电商平台上,用户可以通过客户端发起购物请求,并对所选商品进行下…...

Gitee基础知识
目录 1-gitee 1.1gitee介绍 1.2git与gitee的关系 1.3在国内为什么选择Gitee 2-注册与创建远程仓库 2.1注册 2.2创建远程仓库 2.3配置ssh公钥 2.3.1公钥的生成方法: 2.3.2 在gitee中配置公钥 2.3.4验证公钥 3-添加与推送远程仓库master 3.1基本命令…...

网络空间搜索引擎- FOFA的使用技巧总结
简介 FOFA是一款网络空间测绘的搜索引擎,旨在帮助用户以搜索的方式查找公网上的互联网资产。 FOFA的查询方式类似于谷歌或百度,用户可以输入关键词来匹配包含该关键词的数据。不同的是,这些数据不仅包括像谷歌或百度一样的网页,还…...

用户行为分析遇到的问题-ubantu16,hadoop3.1.3
用户行为分析传送门 我的版本 ubantu16 hadoop 3.1.3 habse 2.2.2 hive3.1.3 zookeeper3.8.3 sqoop 1.46/1.47 我sqoop把MySQL数据往hbase导数据时候有问题 重磅:大数据课程实验案例:网站用户行为分析(免费共享) 用户行为分析-小…...

camera曝光时间
曝光和传感器读数 相机上的图像采集过程由两个不同的部分组成。第一部分是曝光。曝光完成后,第二步就是从传感器的寄存器中读取数据并传输(readout)。 曝光:曝光是图像传感器进行感光的一个过程,相机曝光时间…...

Vue 项目中使用 debugger 在 chrome 谷歌浏览器中失效以及 console.log 指向去了 vue.js 代码
问题 今天在代码里面输出 console.log 信息直接指向了 vue.js,并且代码里面写了 debgger 也不生效 解决 f12 找到浏览器的这个设置图标 找到这个 ignore list 的 custom exclusion rules 取消掉 /node_modules/|/bower_components/ 这样就正常了...

翻译: ChatGPT Token消耗粗略计算英文就是除以四分之三
在这个视频中,我想带你快速浏览一些例子,以建立对在软件应用中使用大型语言模型的实际成本的直观感受。让我们来看看。这是一些示例价格,用于从不同的大型语言模型获取提示和回应,这些模型对开发者可用。即,如果你在你…...

【线性代数】期末速通!
1. 行列式的性质 1.1 求一个行列式的值 特殊地,对角线左下全为0,结果为对角线乘积。行 r 列 c 1.2 性质 某行(列)加上或减去另一行(列)的几倍,行列式不变某行(列)乘 …...
速盾网络:业务卓越,数字安全的领先者
在数字时代的浪潮中,业务成功需要强大的数字基石。速盾网络以其出色的CDN加速、高防IP、SDK游戏盾和抗DDoS攻击等业务,成为业界领先的数字安全保障者,为您的业务提供全方位的支持与保护。 CDN加速:业务飞跃的翅膀 速盾网络以全球…...

Python 全栈体系【四阶】(七)
第四章 机器学习 六、多项式回归 1. 什么是多项式回归 线性回归适用于数据呈线性分布的回归问题。如果数据样本呈明显非线性分布,线性回归模型就不再适用(下图左),而采用多项式回归可能更好(下图右)。例…...

智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蛾群算法4.实验参数设定5.算法结果6.参考文献7.MA…...

Tekton 克隆 git 仓库
Tekton 克隆 git仓库 介绍如何使用 Tektonhub 官方 git-clone task 克隆 github 上的源码到本地。 git-clone task yaml文件下载地址:https://hub.tekton.dev/tekton/task/git-clone 查看git-clone task yaml内容: 点击Install,选择一种…...

高通平台开发系列讲解(AI篇)SNPE工作流程介绍
文章目录 一、转换网络模型二、量化2.1、选择量化或非量化模型2.2、使用离线TensorFlow或Caffe模型2.3、使用非量化DLC初始化SNPE2.4、使用量化DLC初始化SNPE三、准备输入数据四、运行加载网络沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇章主要介绍SNPE模型工作…...
YoloV8改进策略:ASF-YOLO,结合了空间和尺度特征在小目标和密集目标场景有效涨点
摘要 本文提出了一种新型的Attentional Scale Sequence Fusion based You Only Look Once (YOLO)框架(ASF-YOLO),该框架结合了空间和尺度特征,以实现准确且快速的细胞实例分割。该框架建立在YOLO分割框架之上,采用Scale Sequence Feature Fusion (SSFF)模块增强网络的多尺…...

OpenCV-8RGB和BGR颜色空间
一. RGB和BGR 最常见的色彩空间就是RGB,人眼也是基于RGB的色彩空间去分辨颜色。 OpenCV默认使用的是BGR. BGR和RGB色彩空间的区别在于图片在色彩通道上的排列顺序不同。 二.HSV, HSL和YUV 1.HSV(HSB) OpenCV用的最多的色彩空间是HSV. Hue:色相&…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...

基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...

Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...