当前位置: 首页 > news >正文

camera曝光时间

曝光和传感器读数

相机上的图像采集过程由两个不同的部分组成。第一部分是曝光。曝光完成后,第二步就是从传感器的寄存器中读取数据并传输(readout)。

曝光:曝光是图像传感器进行感光的一个过程,相机曝光时间,也就是快门速度,曝光即曝光时间控制,控制感光元件上总的光通量。曝光越大,光通量越大。在数码相机中,可以采用电子快门,也可以采用传统的机械快门。快门速度和光圈大小是互补的。

针对曝光和readout这两个步骤,相机操作有两种常见的方法:“non-overlapped”的曝光和“overlapped”的曝光。在非重叠(“non-overlapped”)模式中,每个图像采集的周期中,相机必须要完成曝光/readout整个过程才能进行下一轮图像采集开始前。
在global shutter相机上,非重叠图像采集如下所示:
在这里插入图片描述
在rolling shutter快门相机上,非重叠图像采集如下所示:
在这里插入图片描述
对于rolling shutter,非重叠图像采集non-overlapped就是在一行曝光完成后执行这一行数据的readout。图上可以看到,各行的曝光时间段是会有重叠的。
global shutter和rolling shutter的介绍见上一篇文章:camera卷帘快门(Rolling Shutter)与全局快门(Global Shutter)

Overlapping Image Acquisition

Overlapping Image Acquisition就是相机在曝光新图像的同时仍读取前一个图像的传感器数据。

如果您想提高相机的帧速率,这将非常有用。

在全局快门相机上,重叠图像采集如下所示:
在这里插入图片描述
可以看到第一帧在进行readout的时候,第二帧已经开始曝光了,重叠指的就是曝光和readout重叠。
在卷帘快门相机上,重叠图像采集如下所示:
在这里插入图片描述
对于rolling shutter,重叠和非重叠采集是一样的。

帧率和曝光时间的关系

帧率(Frame rate)是用于测量显示帧数的度量。所谓测量单位就是每秒帧数(Frames per Second),简称FPS或“赫兹”(Hz)。
由于人眼特殊的生理结构,如果被观看的图像的帧率高于16fps,则认为是相干的。这种现象称为视觉持久性。这就是为什么电影胶片是一帧一帧地拍摄然后快速播放的原因。

由于人眼特殊的生理结构,如果被观看的图像的帧率高于16fps,则认为是连续的。这种现象称为视觉持久性。这就是为什么电影胶片是一帧一帧地拍摄然后播放看起来是连续的的原因。
每秒帧数 (fps) 或帧速率表示图形处理器在处理字段时每秒可以更新的次数。高帧率可以获得更流畅、更逼真的动画。一般30fps是可以接受的,但将性能提高到60fps可以显着提高交互感和真实感,但一般来说,当它超过75fps时,不容易注意到流畅度的显着提高。如果帧率超过屏幕刷新率,只会浪费图形处理能力,因为显示器无法以如此快的速度更新,因此超过刷新率的帧率就被浪费了。

最大帧速率(Frame Rate)/Line Rate:相机收集和传输图像的速率。对于面阵相机,它通常是每秒收集的帧数(帧/秒),而对于线阵相机,它是每秒收集的。行数 (Hz)。

有人问为什么我们在使用工业相机的时候,增加相机的曝光时间后,相机的帧率下降,而且下降得很严重。相机的帧率和曝光之间有什么关系?
如上面所述,相机获取一张图片包括曝光和readout读出数据两部分。

在“重叠”曝光模式下: FramePeriod≤曝光时间+读出时间
在“非重叠”曝光模式下:FramePeriod>曝光时间 + 读出时间

由此可知如果曝光周期设置过长的话帧率是会有所下降的。

相关文章:

camera曝光时间

曝光和传感器读数 相机上的图像采集过程由两个不同的部分组成。第一部分是曝光。曝光完成后,第二步就是从传感器的寄存器中读取数据并传输(readout)。 曝光:曝光是图像传感器进行感光的一个过程,相机曝光时间&#xf…...

Vue 项目中使用 debugger 在 chrome 谷歌浏览器中失效以及 console.log 指向去了 vue.js 代码

问题 今天在代码里面输出 console.log 信息直接指向了 vue.js,并且代码里面写了 debgger 也不生效 解决 f12 找到浏览器的这个设置图标 找到这个 ignore list 的 custom exclusion rules 取消掉 /node_modules/|/bower_components/ 这样就正常了...

翻译: ChatGPT Token消耗粗略计算英文就是除以四分之三

在这个视频中,我想带你快速浏览一些例子,以建立对在软件应用中使用大型语言模型的实际成本的直观感受。让我们来看看。这是一些示例价格,用于从不同的大型语言模型获取提示和回应,这些模型对开发者可用。即,如果你在你…...

【线性代数】期末速通!

1. 行列式的性质 1.1 求一个行列式的值 特殊地,对角线左下全为0,结果为对角线乘积。行 r 列 c 1.2 性质 某行(列)加上或减去另一行(列)的几倍,行列式不变某行(列)乘 …...

速盾网络:业务卓越,数字安全的领先者

在数字时代的浪潮中,业务成功需要强大的数字基石。速盾网络以其出色的CDN加速、高防IP、SDK游戏盾和抗DDoS攻击等业务,成为业界领先的数字安全保障者,为您的业务提供全方位的支持与保护。 CDN加速:业务飞跃的翅膀 速盾网络以全球…...

Python 全栈体系【四阶】(七)

第四章 机器学习 六、多项式回归 1. 什么是多项式回归 线性回归适用于数据呈线性分布的回归问题。如果数据样本呈明显非线性分布,线性回归模型就不再适用(下图左),而采用多项式回归可能更好(下图右)。例…...

智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蛾群算法4.实验参数设定5.算法结果6.参考文献7.MA…...

Tekton 克隆 git 仓库

Tekton 克隆 git仓库 介绍如何使用 Tektonhub 官方 git-clone task 克隆 github 上的源码到本地。 git-clone task yaml文件下载地址:https://hub.tekton.dev/tekton/task/git-clone 查看git-clone task yaml内容: 点击Install,选择一种…...

高通平台开发系列讲解(AI篇)SNPE工作流程介绍

文章目录 一、转换网络模型二、量化2.1、选择量化或非量化模型2.2、使用离线TensorFlow或Caffe模型2.3、使用非量化DLC初始化SNPE2.4、使用量化DLC初始化SNPE三、准备输入数据四、运行加载网络沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇章主要介绍SNPE模型工作…...

YoloV8改进策略:ASF-YOLO,结合了空间和尺度特征在小目标和密集目标场景有效涨点

摘要 本文提出了一种新型的Attentional Scale Sequence Fusion based You Only Look Once (YOLO)框架(ASF-YOLO),该框架结合了空间和尺度特征,以实现准确且快速的细胞实例分割。该框架建立在YOLO分割框架之上,采用Scale Sequence Feature Fusion (SSFF)模块增强网络的多尺…...

OpenCV-8RGB和BGR颜色空间

一. RGB和BGR 最常见的色彩空间就是RGB,人眼也是基于RGB的色彩空间去分辨颜色。 OpenCV默认使用的是BGR. BGR和RGB色彩空间的区别在于图片在色彩通道上的排列顺序不同。 二.HSV, HSL和YUV 1.HSV(HSB) OpenCV用的最多的色彩空间是HSV. Hue:色相&…...

阿里云主导《Serverless 计算安全指南》国际标准正式立项!

日前,在韩国召开的国际电信联盟电信标准分局 ITU-T SG17 全会上,由阿里云主导的《Serverless 计算安全指南》国际标准正式立项成功。 图 1 项目信息 在现今数字化时代,Serverless 计算正逐渐成为云计算的一个新的发展方向,其灵活…...

YOLOv5改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点)

一、本文介绍 本文给大家带来的CARAFE(Content-Aware ReAssembly of FEatures)是一种用于增强卷积神经网络特征图的上采样方法。其主要旨在改进传统的上采样方法(就是我们的Upsample)的性能。CARAFE的核心思想是:使用…...

AWS RDS慢日志文件另存到ES并且每天发送邮件统计慢日志

1.背景:需要对aws rds慢日志文件归档到es,让开发能够随时查看。 2.需求:并且每天把最新的慢日志,过滤最慢的5条sql 发送给各个产品线的开发负责人。 3.准备: aws ak/sk ,如果rds 在不同区域需要认证不同的…...

如何在断线后不重连加入音视频房间

RTC 房间断网后,默认是一直尝试重连的,例如当主播再次联网重连成功后,会自动发布之前在发布的音视频流。针对某些不想断网后重新加入连接的场景,需要如下配置: 1、配置断开后不去重连(这种情况也会重连 4 次…...

RabbitMq交换机详解

目录 1.交换机类型2.Fanout交换机2.1.声明队列和交换机2.2.消息发送2.3.消息接收2.4.总结 3.Direct交换机3.1.声明队列和交换机3.2.消息接收3.3.消息发送3.4.总结 4.Topic交换机4.1.说明4.2.消息发送4.3.消息接收4.4.总结 5.Headers交换机5.1.说明5.2.消息发送5.3.消息接收5.4.…...

智能优化算法应用:基于适应度相关算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于适应度相关算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于适应度相关算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.适应度相关算法4.实验参数设定5.算法…...

spring之基于注解管理Bean

学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。各位小伙伴,如果您: 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持,想组团高效学习… 想写博客但无从下手,急需…...

Wireshark在云计算中的应用

第一章:Wireshark基础及捕获技巧 1.1 Wireshark基础知识回顾 1.2 高级捕获技巧:过滤器和捕获选项 1.3 Wireshark与其他抓包工具的比较 第二章:网络协议分析 2.1 网络协议分析:TCP、UDP、ICMP等 2.2 高级协议分析:HTTP…...

三菱plc学习入门(一,认识三菱plc)

今天就开始对三菱的plc软件入一个门,希望小编的文章对读者和初学者有所帮助!欢迎评论指正,废话不多说,下面开始学习。 目录 plc的型号介绍 M表示什么? T表示什么? R表示什么? 为什么三菱没…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...

测试markdown--肇兴

day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...

零基础设计模式——行为型模式 - 责任链模式

第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

Android15默认授权浮窗权限

我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...