当前位置: 首页 > news >正文

机器视觉技术与应用实战(开运算、闭运算、细化)

开运算和闭运算的基础是膨胀和腐蚀,可以在看本文章前先阅读这篇文章机器视觉技术与应用实战(Chapter Two-04)-CSDN博客

开运算:先腐蚀后膨胀。开运算可以使图像的轮廓变得光滑,具有断开狭窄的间断消除细小突出物的作用。

闭运算:先膨胀后腐蚀。它具有填充物体细小空间消除缝隙连接临近的物体和平滑边界轮廓的作用。

开和闭使用膨胀和腐蚀的顺序有区别,这个我们需要去理解它们作用,这样就更加好记住。开运算由于腐蚀先,腐蚀的作用更加明显,体现在断开连接作用,自然就是“开”。闭运算是膨胀先使用,影响更加大,起到了连接和填充的作用,更加有“闭”的含义了。

看了作用,当然要来一波效果瞧一瞧,注意了开运算和闭运算的基础是在膨胀和腐蚀上的,同样会有膨胀和腐蚀因为灰度不同产生貌似“不同的效果”。

使用Visionpro里面IPOneImage里面闭运算、开运算处理

原图:

闭运算:亮的部分(白色)填充,这里是填充作用,消除了噪点

开运算:亮的部分(白色)断开

在matlab中使用bwmorph函数来处理开运算和闭运算,还是采用相同的图片,我们用matlab来试一下开运算和闭运算,图片的名称为“image3.jpg"。

I1 = imread('image3.jpg');  %读取原图像
level=graythresh(I1);       %最大类间方差法找到图片的一个合适的阈值 
I = im2bw(I1, level);       %二值化图像 
I2= bwmorph(I, 'open');     %开运算
I3= bwmorph(I, 'close');    %闭运算
figure('name','开运算和闭运算');
subplot(1,3,1);             %一行三列第一张
imshow(I);
title('原图像');
subplot(1,3,2);             %一行三列第二张
imshow(I2);
title('开运算');
subplot(1,3,3);             %一行三列第三张
imshow(I3);
title('闭运算');

 效果如下:

在Visionpro中我调整了结构元素(内核)的大小,和matlab中展示的效果稍有区别。可能会有友友想问为什么用visionpro,其实传统机器视觉在工业领域通常采用visionpro和halcon,在我接触到的项目领域里面采用了visionpro,当然如果是在学术界,matlab会使用得更加多。

接下来,我们讲一下细化

一个图像的“骨架”,是指图像中央的骨骼部分,是描述图像几何重要特征之一。求一幅图像的“骨架”的过程通常称作为图像的“细化”的过程,当然也可以这么说,细化*是把一个平面区域简化成图的结构形状表示方法*。由此可以看出细化作用就是有助于突出图像形状特点和减少冗余信息量

细化的过程通常是:图像特征有规律的减少像素点(宽度变窄),在减少的过程中,图像的连通性要求保持不变。

细化的概念还是非常好理解的吧,直接看一下效果吧,注意了细化前务必对图像进行一定处理,确保噪声等不会影响到细化。

原图:

代码如下:

y1 = imread('7.jpg');  %读取原图像
level=graythresh(y1);  %最大类间方差法找到图片的一个合适的阈值 
y = im2bw(y1, level);  %二值化图像 
figure('name','细化');
subplot(1,2,1); imshow(y); title('原始图像');
img_thin = bwmorph(y, 'thin', Inf);% 细化
subplot(1,2,2); imshow(img_thin); title('细化');

运行结果如下:
 

从上面可以看到,细化提取了图像的”骨架“,图像太小了,实际上那些线是连接的,连通的。放大版:

最后,写了这么多,有一个疑惑会产生,有了腐蚀和膨胀,为什么还需要开运算和闭运算呢?

可以这么思考:腐蚀在去除图像的噪声同时压缩图像,导致图像的前景变小。膨胀去除噪声并且扩大了前景,但是可能会增强图像的边缘噪声,这两者都有局限性。膨胀和腐蚀两者有互相弥补的特点,就出现了开运算和闭运算。

“人生用特写镜头来看是悲剧,长镜头来看则是喜剧。”当前的点滴是为后期厚积薄发做准备,趁青春,勇敢闯!

欢迎各位大佬指出文章不足!

相关文章:

机器视觉技术与应用实战(开运算、闭运算、细化)

开运算和闭运算的基础是膨胀和腐蚀,可以在看本文章前先阅读这篇文章机器视觉技术与应用实战(Chapter Two-04)-CSDN博客 开运算:先腐蚀后膨胀。开运算可以使图像的轮廓变得光滑,具有断开狭窄的间断和消除细小突出物的作…...

云原生之深入解析云原生架构的日志监控

一、什么是云原生架构的日志监控? 云原生架构的日志监控要求现代 Web 应用程序采用与传统应用程序略有不同的方法。部分原因是应用程序环境要复杂得多,包括从微服务中获取数据、使用 Kubernetes 和其他容器技术,以及在许多情况下集成开源组件…...

基于hfl/rbt3模型的情感分析学习研究——文本挖掘

参考书籍《HuggingFace自然语言处理详解 》 什么是文本挖掘 文本挖掘(Text mining)有时也被称为文字探勘、文本数据挖掘等,大致相当于文字分析,一般指文本处理过程中产生高质量的信息。高质量的信息通常通过分类和预测来产生&…...

计算机网络基础——常用的中英文网络述语大全,强烈建议收藏

系统网络体系结构(System Network Architecture,SNA) 国际标准化组织(International Organization for Standardization,ISO) 开放系统互连基本参考模型(Open System Interconnection Reference Model。OSI/RM) 物理层(Physical Layer) 数据终端设备…...

c++如何自定义类及成员函数

#include <iostream>using namespace std;class Box {public:double length; // 长度double breadth; // 宽度double height; // 高度// 成员函数声明double get(void);void set( double len, double bre, double hei ); }; // 成员函数定义 double Box::get(void) …...

100G云数据中心网络建设解决方案

随着数据和流量的快速增长&#xff0c;近年来数据中心已经进入了一个全新的100G时代。为了更高效地提供包括人工智能、虚拟现实、4K视频等在内的云计算服务&#xff0c;全球范围内正在大规模建设众多大型100G数据中心&#xff0c;如云数据中心。作为一种新型高效的基础设施&…...

Zoho Desk为何受到跨境电商企业青睐:优势与特点解析

现如今&#xff0c;跨境电商已成为中国外贸发展的一支重要力量&#xff0c;正从一种新业态成长为外贸的新常态。越来越多的国内电商玩家加入了跨境电商这个战场。跨境电商自有其特殊性&#xff0c;海外客户服务不好一样惨遭投诉&#xff0c;Zoho Desk可以帮助您赢得客户满意度&…...

git 删除仓库中多余的文件或者文件夹

目录 问题 解决方案 第一步&#xff1a;同步代码 第二步&#xff1a;删除文件 第三步&#xff1a;提交 第四步&#xff1a;推送远端 问题 在项目开发测试阶段&#xff0c;将无意间将本地敏感的、或无用的文件或目录不小心提交到远程仓库&#xff0c;该怎么解决呢。 解决方…...

搭建git服务器(本地局域网)

搭建git服务器&#xff08;本地局域网&#xff09; 创建仓库 (假定在/home/git目录下创建仓库) git init --bare sample.git克隆远程仓库到本地 git clone git192.168.0.100:/home/git/sample.git已有项目&#xff0c;绑定远程仓库 # 查看远程仓库绑定 git remote -v# 解除…...

如何让营销更生动,更有效!

作为专业的营销人员&#xff0c;我们深知在当今竞争激烈的市场环境中&#xff0c;如何让自己的产品或服务脱颖而出&#xff0c;吸引更多的潜在客户&#xff0c;是企业成功的关键。而中昱维信视频短信平台&#xff0c;正是您实现这一目标的得力助手。 一、视频短信&#xff0c;…...

RestTemplate请求参数需要转义 处理

项目需求 iam的token鉴权 需要带转义的回调http路径 用以下处理参数 接口仍然返回异常&#xff1a; public String authBack(String backUrl){ // backUrl http://192.168.1.156:sdm/String state URLEncoder.encode(state, "UTF-8"); }查了一下&#xff0c;Rest…...

使用Kaptcha实现的验证码功能

目录 一.需求 二.验证码功能实现步骤 验证码 引入kaptcha依赖 完成application.yml配置文件 浏览器显示验证码 前端页面 登录页面 验证成功页面 后端 此验证码功能是以SpringBoot框架下基于kaptcha插件来实现的。 一.需求 1.页面生成验证码 2.输入验证码&#xff…...

【无标题】CTF之SQLMAP

拿这一题来说 抓个包 复制报文 启动我们的sqlmap kali里边 sqlmap -r 文件路径 --dump --dbs 数据库 --tables 表...

【Qt之Quick模块】1. 概述及Quick应用程序创建流程

概述 Qt的Quick模块是用于创建现代化、动态和响应式用户界面的工具集。它是基于QML&#xff08;Qt Meta-Object Language&#xff09;和JavaScript的。 QML是一种声明性的语言&#xff0c;用于描述用户界面的结构和行为。它使用层叠样式表&#xff08;CSS&#xff09;的语法来…...

C语言-数组指针笔试题讲解(1)-干货满满!!!

文章目录 ▶️1.sizeof和strlen的对比&#x1f4af;➡️1.1 sizeof是什么&#xff1f;&#x1f4af;➡️1.2sizeof用法举例&#x1f4af;▶️1.3strlen是什么&#xff1f;&#x1f4af;▶️1.4 strlen函数用法举例&#xff1a;&#x1f4af;▶️1.5 strlen和sizeof的对比&#…...

springboot整合vue,将vue项目整合到springboot项目中

将vue项目打包后&#xff0c;与springboot项目整合。 第一步&#xff0c;使用springboot中的thymeleaf模板引擎 导入依赖 <!-- thymeleaf 模板 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-t…...

C++ 二叉搜索树(BST)的实现(非递归版本与递归版本)与应用

C 二叉搜索树的实现与应用 一.二叉搜索树的特点二.我们要实现的大致框架三.Insert四.InOrder和Find1.InOrder2.Find 五.Erase六.Find,Insert,Erase的递归版本1.FindR2.InsertR3.EraseR 七.析构,拷贝构造,赋值运算符重载1.析构2.拷贝构造3.赋值运算重载 八.Key模型完整代码九.二…...

分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】

分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】 目录 分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现AOA-SVM算术优化支持向量机的数据分类预测…...

代码随想录算法训练营第七天 | 454.四数相加II、383. 赎金信、15. 三数之和 、18. 四数之和

454.四数相加II 题目链接&#xff1a;454.四数相加II 给你四个整数数组 nums1、nums2、nums3 和 nums4 &#xff0c;数组长度都是 n &#xff0c;请你计算有多少个元组 (i, j, k, l) 能满足&#xff1a; 0 < i, j, k, l < nnums1[i] nums2[j] nums3[k] nums4[l] 0…...

SpringBoot 3.2.0 版本 mysql 依赖下载错误

最近想尝试一下最新的 SpringBoot 项目&#xff0c;于是将自己的开源项目进行了一些升级。 JDK 版本从 JDK8 升级至 JDK17。SpringBoot 版本从 SpringBoot 2.7.3 升级到 SpringBoot 3.2.0 其中 JDK 的升级比较顺利&#xff0c;毕竟 JDK 的旧版本兼容性一直非常好。 但是在升级…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知&#xff0c;帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量&#xff0c;能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度&#xff0c;还为机器人、医疗设备和制造业的智…...

李沐--动手学深度学习--GRU

1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...

IP选择注意事项

IP选择注意事项 MTP、FTP、EFUSE、EMEMORY选择时&#xff0c;需要考虑以下参数&#xff0c;然后确定后选择IP。 容量工作电压范围温度范围擦除、烧写速度/耗时读取所有bit的时间待机功耗擦写、烧写功耗面积所需要的mask layer...

大模型智能体核心技术:CoT与ReAct深度解析

**导读&#xff1a;**在当今AI技术快速发展的背景下&#xff0c;大模型的推理能力和可解释性成为业界关注的焦点。本文深入解析了两项核心技术&#xff1a;CoT&#xff08;思维链&#xff09;和ReAct&#xff08;推理与行动&#xff09;&#xff0c;这两种方法正在重新定义大模…...