当前位置: 首页 > news >正文

Stochastic Approximation 随机近似方法的详解之(三)Dvoretzky’s convergence theorem

定理内容

Theorem 6.2 (Dvoretzky’s Theorem). Consider a stochastic process
wk+1=(1−αk)wk+βkηkw_{k+1}=\left(1-\alpha_k\right) w_k+\beta_k \eta_kwk+1=(1αk)wk+βkηk,
其中{αk}k=1∞,{βk}k=1∞,{ηk}k=1∞\{\alpha_k\}^\infty_{k=1},\{\beta_k\}^\infty_{k=1},\{\eta_k\}^\infty_{k=1}{αk}k=1,{βk}k=1,{ηk}k=1都是随机序列。这里αk≥0,βk≥0{\alpha_k} \ge 0,{\beta_k} \ge 0αk0,βk0 对于所有的kkk都是成立的。那么 wkw_{k}wk would converge to zero with probability 1 if the following conditions are satisfied:
在这里插入图片描述

要点阐释

  1. RM算法里面的αk{\alpha_k}αk是确定性的。然而Dvoretzky’s Theorem中 αk,βk{\alpha_k},{\beta_k}αk,βk 可以是由Hk\mathcal H_kHk决定的随机变量。因此Dvoretzky’s Theorem 更加通用和强大。
  2. 对于uniformly w.p.1 的解释:
    在这里插入图片描述
  3. 不再要求观测误差项ηk\eta_kηk的系数βk\beta_kβk的收敛速度了,收敛的快也没有关系。
    在这里插入图片描述

证明在这里不展开,需要用到quasimartingales的知识

在这里插入图片描述

应用

证明Robbins-Monro theorem:
在这里插入图片描述

我们在等式两边同时减去目标根:
wk+1−w∗=wk−w∗−ak[g(wk)−g(w∗)+ηk]w_{k+1}-w^*=w_k-w^*-a_k\left[g\left(w_k\right)-g\left(w^*\right)+\eta_k\right]wk+1w=wkwak[g(wk)g(w)+ηk]

然后就有:(注意,下面用到了中值定理)

在这里插入图片描述

注意这里的αk\alpha_kαk不再是确定的了,而是由wk和wk′w_k和w_k'wkwk共同决定的随机序列。对照Dvoretzky’s convergence theorem成立的条件,发现都满足:
在这里插入图片描述

到这里也就证明了RM算法求解方程根的收敛性。

定理的扩展:

原定理只能解决单变量的问题,不够使啊。必须扩展一下,让它可以处理多变量。扩展后的Dvoretzky’s convergence theorem 可以用来分析一些随机迭代算法的收敛性:比如Q-learning和TD算法。

扩展后的定理的内容:
在这里插入图片描述

在这样的定义下,原先数值上的大小比较就变成了不同向量之间的max norm的比较。注意哈,Hk\mathcal H_kHk是历史数据序列。

顺便解释一下max norm:
在这里插入图片描述

定理扩展的一些说明

  1. 扩展后的定理比原定理更加通用。首先,由于最大范数(the maximum norm)的引入,它可以处理多元变量的情况,对于具有很多个状态的强化学习问题,这一点很重要。第二,相比于原定理对E[ek(x)∣Hk]=0\mathbb{E}\left[e_k(x) \mid \mathcal{H}_k\right]=0E[ek(x)Hk]=0 and var⁡[ek(x)∣Hk]≤C\operatorname{var}\left[e_k(x) \mid \mathcal{H}_k\right] \leq Cvar[ek(x)Hk]C的要求,this theorem only requires that the expectation and variance are bounded by the error ∆k。
  2. 虽然(6.9)只是针对单个状态,但它可以处理多个状态的原因是是因为条件3和4,它们是针对整个状态空间的。此外, 在应用该定理证明RL算法的收敛性时,我们需要表明(6.9)对每个状态都有效。

参考
https://github.com/MathFoundationRL/Book-Mathmatical-Foundation-of-Reinforcement-Learning

相关文章:

Stochastic Approximation 随机近似方法的详解之(三)Dvoretzky’s convergence theorem

定理内容 Theorem 6.2 (Dvoretzky’s Theorem). Consider a stochastic process wk1(1−αk)wkβkηkw_{k1}\left(1-\alpha_k\right) w_k\beta_k \eta_kwk1​(1−αk​)wk​βk​ηk​, 其中{αk}k1∞,{βk}k1∞,{ηk}k1∞\{\alpha_k\}^\infty_{k1},\{\beta_k\}^\infty_{k1},\…...

7个ES6解构技巧让代码更简洁

您是否厌倦了编写臃肿且难以阅读的代码?想要提升您的编码技能并使您的代码更具可读性和简洁性? 从解构对象和数组到使用默认值和展开运算符,我们将涵盖所有内容,现在,我们将准备好掌握干净简洁的编码艺术。 1.解构对…...

曾经被人们看成是异想天开的产业互联网,或许终将会实现

一波还未平息,一波又起。元宇宙的热度还未彻底散去,ChatGPT已经成为了名符其实的新风口。如果用一个概念来定义现在这样一个热点和风口频出的时代的话,我想,用产业互联网或许是再合适不过的了。对此,可能有人并不认同。…...

log4j控制台不打印日志的故障解决方案

前言 接管了别的项目组的一个代码,在IDAE调试程序的过程中,发现log4j日志居然没有打印在控制台上,日志相关代码也没有问题。 在网上搜索了一圈,总结了一下个人解决这个问题的流程。 流程 1. 判断用了什么配置文件 不知道是出…...

C# 序列化时“检测到循环引用”错误的彻底解决方案

目录 一&#xff0c;问题表现 二、没有技术含量的解决方案 三、本人彻底的解决方案 简要说明 贴代码 思路解析 思路 一&#xff0c;问题表现 示例代码如下&#xff1a; [Serializable] public class NodeTest {public NodeTest (){new List<NodeTest> ();}p…...

小红书“复刻”微信,微信“内造”小红书

配图来自Canva可画 随着互联网增长红利逐渐见顶&#xff0c;各大互联网平台对流量的争夺变得愈发激烈。而为了寻找新的业务可能性&#xff0c;各家都在不遗余力地拓宽自身边界。在此背景下&#xff0c;目前最为“吸睛”和“吸金”的社交、电商、种草、短视频等领域&#xff0c…...

用arthas轻松排查线上问题

你是否在项目中会碰到以下一些问题&#xff1a; 在代码中打印各种日志来排查&#xff0c;比如方法的入参&#xff0c;出参&#xff0c;及在方法体中打印日志判断走哪行代码还有你觉得代码没问题&#xff0c;可是运行出现却是以前的bug&#xff0c;感觉代码没修改&#xff0c;或…...

mysql一explain结果分析

1. EXPLAIN简介 使用EXPLAIN关键字可以模拟优化器执行SQL查询语句&#xff0c;从而知道MySQL是如何处理你的SQL语句的。分析你的查询语句或是表结构的性能瓶颈。 ➤ 通过EXPLAIN&#xff0c;我们可以分析出以下结果&#xff1a; 表的读取顺序数据读取操作的操作类型哪些索引可…...

原理底层计划--HashMap

HashMap 之前写了“Java集合TreeMap红黑树一生只爱一次”&#xff0c;说到底还是太年轻了&#xff0c;Map其实在排序中应用比较少&#xff0c;一般追求的是速度&#xff0c;通过HashMap来获取速度。hashmap 调用object hashcode方法用于返回对象的哈希码&#xff0c;主要使用在…...

win10 设备管理器中的黄色感叹号(华硕)

目录一、前言二、原因三、方案四、操作一、前言 打开设备管理器&#xff0c;我们可以看到自己设备的信息&#xff0c;但是在重装系统后&#xff0c;你总会在不经意间发现。咦&#xff0c;怎么多了几个感叹号&#xff1f;&#xff1f;&#xff1f; 由于我已经解决该问题&#…...

新产品上市推广不是“铺货”上架

只有不断推出新产品的企业才能走得长远&#xff0c;但现实中往往有很多企业投入了大量人力、物力、财力研发的新产品却在推广的过程中屡屡受挫。那么&#xff0c;为什么适合市场的新产品会在市场营销推广的过程中夭折呢&#xff1f;小马识途营销顾问分析有如下几点&#xff1a;…...

MATLAB训练神经网络小结

MATLAB训练神经网络小结1、一个典型例子1.1 可视化神经网络1.2 指定某一层的激活函数1.3 训练神经网络时使用L1正则化1.4返回训练过程中的参数1.5 查看训练好的权重系数1.6 如何使用早停法来防止过拟合1、一个典型例子 例如输入特征为10维&#xff0c;想训练一个10x20x10x1的三…...

实战:一天开发一款内置游戏直播的国产版Discord应用【附源码】

游戏直播是Discord产品的核心功能之一&#xff0c;本教程教大家如何1天内开发一款内置游戏直播的国产版Discord应用&#xff0c;用户不仅可以通过IM聊天&#xff0c;也可以进行语聊&#xff0c;看游戏直播&#xff0c;甚至自己进行游戏直播&#xff0c;无任何实时音视频底层技术…...

嵌入式学习笔记——基于Cortex-M的单片机介绍

基于Cortex-M的单片机介绍前言生产厂商及其产品线ARM单片机的产品线命名规则留个作业习单片机的资料准备STM32开发所需手册1.芯片的数据手册作业2前言 本文继续接着上一篇中关于Cortex-M的介绍&#xff0c;来记录一些关于ARM系单片机的知识。 生产厂商及其产品线 芯片厂商在…...

Python 虚拟环境的使用

PyCharm 创建的虚拟环境与使用 workon 命令创建的虚拟环境在本质上没有区别&#xff0c;它们都是 Python 的虚拟环境。 使用 PyCharm 创建工程时&#xff0c;使用可以使用曾经工程的虚拟环境&#xff0c;或者新建一个虚拟环境来安装 Python 的库&#xff0c;又或者使用 workon…...

招生咨询|浙江大学MPA项目2023年招生问答与通知

问&#xff1a;报考浙江大学MPA的基本流程是怎么样的&#xff1f; 答&#xff1a;第一阶段为网上报名与确认。MPA考生须参加全国管理类联考&#xff0c;网上报名时间一般为10月初开始、10月下旬截止&#xff0c;错过网上报名时间后不能补报。确认时间一般为11月上旬&#xff0c…...

Qt std :: bad_alloc

文章目录摘要问题出现原因第一种 请求内存多余系统可提供内存第二种 地址空间过于分散&#xff0c;无法满足大块连续内存的请求第三种 堆管理数据结构损坏稍微总结下没想到还能更新参考关键字&#xff1a; std、 bad、 alloc、 OOM、 异常退出摘要 今天又是被BUG统治的一天&a…...

《设计模式》装饰者模式

《设计模式》装饰者模式 装饰者模式&#xff08;Decorator Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许在不改变现有对象结构的情况下&#xff0c;动态地添加行为或责任到对象上。在装饰者模式中&#xff0c;有一个抽象组件&#xff08;Component&#xff09;…...

一文说清Kubernetes的本质

文章目录Kubernetes解决了什么问题&#xff1f;Kubernetes的全局架构Kubernetes的设计思想Kubernetes的核心功能Kubernetes如何启动一个容器化任务&#xff1f;Kubernetes解决了什么问题&#xff1f; 编排&#xff1f;调度&#xff1f;容器云&#xff1f;还是集群管理&#xf…...

信息发布小程序【源码好优多】

简介 信息发布小程序&#xff0c;实现数据与小程序数据同步共享&#xff0c;通过简单的配置就能搭建自己的小程序。&#xff0c;基于微信小程序开发的小程序。 这个框架比较简单就是用微信原生开发技术进行实现的&#xff0c;可以用于信息展示等相关信息。其中目前APP比较多&am…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...