当前位置: 首页 > news >正文

爬虫工作量由小到大的思维转变---<第十三章 Scrapy之pipelines分离的思考>

前言:

收到留言: "我的爬取的数据处理有点大,scrapy抓网页挺快,处理数据慢了!"

-----针对这位粉丝留言,我只想说:'你那培训班老师可能给你漏了课程! 大概你们上课讲的案例属于demo,他教了你一些基本操作,但他没有对相关业务对你讲透! 你研究一下pipelines,或者看我现在给你讲的.

正文

首先,你要清楚,当在Scrapy框架中,pipelines是顺序执行的,对item的处理通常是同步进行。

这时候,你要分析2件事:

1.我的数据要不要清洗

2.我的数据准备怎么存储

分开讲:

1.我的数据要不要清洗:

如果需要清洗,item的数据里比较多,我建议你转一下pd.dataframe;这样,会比正常运算要快得多;然后,给你3条建议:

  1. 避免在循环内使用 df.apply():--->    apply() 是行或列级别的操作函数,效率相对较低。如果可以,尝试用更高效的Pandas内建函数代替,比如使用逻辑运算与 numpy 的向量化操作。
  2. 对于字符串处理,如果数据量很大,应当尽量使用向量化方法,例如 .str 方法或其他Pandas字符串操作代替 lambda 函数。
  3. 当创建新的列时,用条件表达式替代 .apply(lambda) 可以获得更好的性能,条件表达式在Pandas中是向量化的。
如果pandas处理之后,不满足:
分离繁重操作:
如果有些操作很繁重,可以将它们移动到Scrapy的middleware或者扩展来进行,这样可能有助于提高item pipeline的处理速度。这时候,你就可以通过外部自己写一个多线程/多进程来处理你的数据工作!
当然,处理item的数据清理工作,我建议你用:
ItemAdapter
什么是ItemAdapter?

-它是一个包装类,允许我们以一致的方式处理不同种类的数据结构,例如dict、scrapy.Item以及自定义的数据类。无论内部的数据存储格式如何,ItemAdapter都能让我们同等的获取和设置Item中的字段值。


ItemAdapter的使用场景

ItemAdapter特别适用于编写更通用的Pipeline代码。无论传入的Item是Scrapy的Item实例还是普通的dict,甚至是自定义的类实例,你都可以使用相同的方法来处理它们。这样的设计大大提升了代码的复用性和可维护性。

案例:
import scrapy
from itemadapter import ItemAdapter
import pandas as pd
import numpyclass JihaiPipeline:def open_spider(self, spider):# 初始化工作,例如连接数据库passdef close_spider(self, spider):# 清理工作,例如关闭数据库连接passdef process_item(self, item, spider):# 使用ItemAdapter包装itemadapter = ItemAdapter(item)# 进行数据处理...# 例如,假设我们需要给所有Item添加一个新字段adapter['new_field'] = '丢一个新的字段进去'# 处理完后,返回itemreturn item

在上面的代码中,我们没有直接操作原始的item对象,而是将其通过ItemAdapter(item)包装起来。然后就可以像操作字典一样,通过adapter['new_field']来设置新字段。在管道中修改完数据后,可以直接将Item传递到下一个管道。

ItemAdapter中的向量化操作

对于爬虫项目,可能需要对数据进行更复杂的清洗和转换操作。在Pandas的帮助下,我们可以执行向量化的数据处理工作,这是一种高效处理数据的方式。通过Pandas,利用DataFrame进行复杂的数据清洗和分析变得相当简便

案例:
class JihaiPipeline:# ...之前的方法...def process_item(self, item, spider):adapter = ItemAdapter(item)# 假设我们的item有一个成绩的列表需要处理grades = adapter.get('grades', [])# 使用Pandas创建DataFramedf = pd.DataFrame(grades)# 执行一些复杂的计算操作,例如计算平均分adapter['average_grade'] = df['score'].mean()# 返回处理后的itemreturn item

在这个例子中,我们先获取了成绩列表,然后使用这个列表创建了一个Pandas DataFrame。之后我们就可以利用DataFrame提供的方法进行各种操作,比如这里计算了一个平均分成绩,然后将其添加到了item中。

小总结:

ItemAdapter提供了一个透明的方式来处理项,帮助你更简单地编写与项结构无关的代码。与Pandas结合使用,它也使得在Scrapy中进行复杂数据处理成为可能。记住,一致性、可读性和可维护性是编写高质量爬虫代码时的关键点。


2.我的数据准备怎么存储?

 

如果你的数据比较单一,你直接存(就跟你老师教你的那样!) 如果你的数据已经到达了你的瓶颈,你最好做个分离;然后看我之前的文章,例如:存入sql--->你首先要想到的就是异步!

在Scrapy中,最佳实践通常是将数据处理(清洗、转换等)与数据存储(写入数据库等)分离。这为你的数据处理流水线提供了更好的组织结构和可扩展性。每个Pipeline应该只负责一个操作或一组相关操作。这样做的好处是:

1. 职责分离:这使得每个pipeline的职责更清晰。如果以后需要更改存储逻辑,只需要更改保存到SQL的pipeline,而不需要触及数据处理的pipeline。
2. 模块化:如果在将来需要将数据存储到不同的后端(例如不同的数据库,或者文件系统等),你可以简单地添加一个新的pipeline来处理这种情况,而不是更改现有代码。
3. 可维护性:代码维护更简单,因为数据清洗和存储是分开的,错误更容易追踪,代码更容易调试。
4. 可测试性:独立的pipeline更容易进行单元测试。

既然已经完成了数据处理,并且将结果整理成了待存储的格式,接下来的逻辑步骤是将这些数据保存到SQL数据库。创建一个新的Pipeline类专门用于与SQL数据库的交互,这样,你的 `XXXPipeline` 负责处理数据,并将处理后的数据传递给稍后在settings.py文件中定义优先级更低的SQL存储pipeline。

下面是创建一个专门用于存储数据到SQL数据库的pipeline的简单例子(要异步,往前看我文章有介绍):

# sql_pipeline.pyimport scrapy
from scrapy import Item
from itemadapter import ItemAdapterclass SQLStorePipeline:def open_spider(self, spider):# 这里设置数据库连接self.connection = create_connection_to_database()def close_spider(self, spider):# 关闭数据库连接self.connection.close()def process_item(self, item, spider):# 提取ItemAdapteradapter = ItemAdapter(item)# 保存到数据库的逻辑save_to_database(self.connection, adapter.as_dict())return item  # 注意,返回item是为了允许多个pipelinedef create_connection_to_database():# 创建数据库链接逻辑passdef save_to_database(connection, item_data):# 将item数据保存到数据库的逻辑pass

在`settings.py`文件中,您需要确保新的`SQLStorePipeline`在`XXXPipeline`之后执行。这可以通过为它们分配不同的`ITEM_PIPELINES`值来实现:

# settings.pyITEM_PIPELINES = {'myproject.pipelines.XXXPipeline': 300,  #处理数据清理的'myproject.pipelines.SQLStorePipeline': 800,   #存储的
}

这样,每个item首先通过`JihaiPipeline`进行处理,然后再通过`SQLStorePipeline`进行存储。

通过这种方式,您既保持了pipeline的职责分割,又为后续的维护和可能的扩展性打下了良好的基础。如果有多个数据存储或处理需求,遵循这种模式是非常有好处的。

总结:

你就记住,如果你的item数据量比较大,一定要分离! 分完了,很多都能处理了! 另外,你记得itemAdapter的用法~ 他应该算是一个引子,透过他~你写着写着就会冒出很多怪招出来~ 然后,再不行,你就进行分布式! 反正你的业务已经模块化了,拿一个机器专门清理,拿一个机器专门存储~或者,丢到中间件,甩到外部去做多线程处理!这样,在爬虫过程中,对数据的清理和存储的工作量,就能被划分掉,不就轻了么...   

请你看到这文章,给我点个赞!!

(让我知道你来了)

相关文章:

爬虫工作量由小到大的思维转变---<第十三章 Scrapy之pipelines分离的思考>

前言: 收到留言: "我的爬取的数据处理有点大,scrapy抓网页挺快,处理数据慢了!" -----针对这位粉丝留言,我只想说:你那培训班老师可能给你漏了课程! 大概你们上课讲的案例属于demo,他教了你一些基本操作,但他没有对相关业务对你讲透! 你研究一下pipelines,或者看我现…...

【Unity】运行时创建曲线(贝塞尔的运用)

[Unity]运行时创建线(贝塞尔的运用) 1. 实现的目标 在运行状态下创建一条可以使用贝塞尔方法实时编辑的网格曲线。 2. 原理介绍 2.1 曲线的创建 unity建立网格曲线可以参考Unity程序化网格体的实现方法。主要分为顶点,三角面&#xff0c…...

基于DSP的IIR数字滤波器(论文+源码)

1.系统设计 在本次基于DSP的IIR数字低通滤波计中,拟以TMS320F28335来作为系统的主控制器,通过ADC0832模数转换芯片来对输入信号进行采集;通过TLC5615来将低通滤波后的信号进行输出;同时结合MATLAB仿真软件,对设计的II…...

Django(一)

1.web框架底层 1.1 网络通信 注意:局域网 个人一般写程序,想要让别人访问:阿里云、腾讯云。 去云平台租服务器(含公网IP)程序放在云服务器 先以局域网为例 我的电脑【服务端】 import socket# 1.监听本机的IP和…...

微信小程序如何利用createIntersectionObserver实现图片懒加载

微信小程序如何利用createIntersectionObserver实现图片懒加载 节点布局相交状态 API 可用于监听两个或多个组件节点在布局位置上的相交状态。这一组API常常可以用于推断某些节点是否可以被用户看见、有多大比例可以被用户看见。 节点布局相交状态 API中有一个 wx.createInter…...

七:爬虫-数据解析之正则表达式

七:正则表达式概述 正则表达式,又称规则表达式,(Regular Expression,在代码中常简写为regex、regexp或RE),是一种文本模式,包括普通字符(例如,a 到 z 之间的字母&#xf…...

云原生之深入解析亿级流量架构之服务限流思路与方法

一、限流思路 ① 熔断 系统在设计之初就把熔断措施考虑进去,当系统出现问题时,如果短时间内无法修复,系统要自动做出判断,开启熔断开关,拒绝流量访问,避免大流量对后端的过载请求。系统也应该能够动态监测…...

【Python炫酷系列】祝考研的友友们金榜题名吖(完整代码)

文章目录 环境需求完整代码详细分析系列文章环境需求 python3.11.4及以上版本PyCharm Community Edition 2023.2.5pyinstaller6.2.0(可选,这个库用于打包,使程序没有python环境也可以运行,如果想发给好朋友的话需要这个库哦~)【注】 python环境搭建请见:https://want595.…...

KL散度、CrossEntropy详解

文章目录 0. 概述1. 信息量1.1 定义1.2 性质1.3 例子2. 熵 Entropy2.1 定义2.2 公式2.3 例子3. 交叉熵 Cross Entropy3.1 定义3.2 公式3.3 例子4. KL 散度(相对熵)4.1 公式...

【算法】红黑树

一、红黑树介绍 红黑树是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。 红黑树是在1972年由Rudolf Bayer发明的,当时被称为平衡二叉B树(symmetric binary B-trees)。后来&am…...

2023楚慧杯 WEB方向 部分:(

1、eaaeval 查看源码能看见账号&#xff1a;username169&#xff0c;密码&#xff1a;password196提交这个用户密码可以跳转到页面/dhwiaoubfeuobgeobg.php 通过dirsearch目录爆破可以得到www.zip <?php class Flag{public $a;public $b;public function __construct(){…...

STM32 CAN多节点组网项目实操 挖坑与填坑记录2

系列文章&#xff0c;持续探索CAN多节点通讯&#xff0c; 上一篇文章链接&#xff1a; STM32 CAN多节点组网项目实操 挖坑与填坑记录-CSDN博客文章浏览阅读120次。CAN线性组网项目开发过程中遇到的数据丢包问题&#xff0c;并尝试解决的记录和推测分析。开发了一个多节点线性…...

Flink 数据类型 TypeInformation信息

Flink流应用程序处理的是以数据对象表示的事件流。所以在Flink内部&#xff0c;我么需要能够处理这些对象。它们需要被序列化和反序列化&#xff0c;以便通过网络传送它们&#xff1b;或者从状态后端、检查点和保存点读取它们。为了有效地做到这一点&#xff0c;Flink需要明确知…...

基于python的leetcode算法介绍之递归

文章目录 零 算法介绍一 简单示例 辗转相除法Leetcode例题与思路[509. 斐波那契数](https://leetcode.cn/problems/fibonacci-number/)解题思路&#xff1a;题解&#xff1a; [206. 反转链表](https://leetcode.cn/problems/reverse-linked-list/)解题思路&#xff1a;题解&…...

2023年度佳作:AIGC、AGI、GhatGPT、人工智能大语言模型的崛起与挑战

目录 前言 01 《ChatGPT 驱动软件开发》 内容简介 02 《ChatGPT原理与实战》 内容简介 03 《神经网络与深度学习》 04 《AIGC重塑教育》 内容简介 05 《通用人工智能》 目  录 前言 2023年是人工智能大语言模型大爆发的一年&#xff0c;一些概念和英文缩写也在这一…...

Axure的交互以及情形的介绍

一. 交互 1.1 交互概述 通俗来讲就是&#xff0c;谁用了什么方法做了什么事情&#xff0c;主体"谁"对应的就是axure中的元件&#xff0c;"什么方法"对应的就是交互事件&#xff0c;比如单击事件、双击事件&#xff0c;"什么事情"对应的就是交互…...

【MATLAB第84期】基于MATLAB的波形叠加极限学习机SW-ELM代理模型的sobol全局敏感性分析法应用

【MATLAB第84期】基于MATLAB的波形叠加极限学习机SW-ELM代理模型的sobol全局敏感性分析法应用 前言 跟往期sobol区别&#xff1a; 1.sobol计算依赖于验证集样本&#xff0c;无需定义变量上下限。 2.SW-ELM自带激活函数&#xff0c;计算具有phi&#xff08;x&#xff09;e^x激…...

米游社区表情包整合网站源码

源码介绍 米游社表情包整合网站源码&#xff0c;来自Github大佬的项目&#xff0c;包含米游兔123枚&#xff0c;米游社 玩家12枚&#xff0c;崩坏 星穹铁道112枚&#xff0c;绝区零218枚&#xff0c;NAP32枚&#xff0c;崩坏RPG62枚&#xff0c;崩坏3-1282枚&#xff0c;原神 …...

easyexcel调用公共导出方法导出数据

easyexcel备忘 Slf4j public class ConditionDownloadUtil {//扫描在xboot 包下所有IService 接口的子类, 每次启动服务后, 重新扫描public final static Class[] classesExtendsIService ClassUtil.scanPackageBySuper("cn.exrick.xboot", IService.class).toArra…...

C语言插入排序算法及代码

一、原理 在待排序的数组里&#xff0c;从数组的第二个数字开始&#xff0c;通过构建有序序列&#xff0c;对于未排序数据&#xff0c;在已排序序列中从后向前扫描&#xff0c;找到相应位置并插入。 二、代码部分 #include<stdio.h> #include<stdlib.h> int ma…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...