当前位置: 首页 > news >正文

智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.水基湍流算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用水基湍流算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.水基湍流算法

水基湍流算法原理请参考:https://blog.csdn.net/u011835903/article/details/121785889
水基湍流算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

水基湍流算法参数如下:

%% 设定水基湍流优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明水基湍流算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.水基湍流算法4.实验参数设定5.算法结果6.…...

打开和关闭GBASE南大通用数据库连接

下面的样例代码使用连接字符串通过GBASE南大通用Connection 类创建连接对象、 打开连接、关闭连接GBASE南大通用。 C# 示例: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Diagnostics; using Sys…...

Zookeeper 集群搭建过程中常见错误

文章目录 Mode: standalone启动失败 Mode: standalone 这通常表示 Zookeeper 配置为单节点模式,而不是集群模式。需要检查 zoo.cfg 文件中的配置,确保包含了所有集群节点的信息。 启动失败 /usr/bin/java ZooKeeper JMX enabled by default Using con…...

Linux开发工具——vim篇

vim开发工具的使用 文章目录 vim开发工具的使用认识vimvim常用三种模式vim正常模式命令集模式切换移动光标删除文字赋值替换撤销上一次操作更改跳到指定的行 vim末行模式命令集列出行号跳到文件中的某一行:保存文件离开vim查找字符: 总结题外话&#xff…...

基于YOLOv5的吸烟检测系统设计与实现

一、项目背景 吸烟检测作为保障公共健康和环境安全的重要任务之一,一直备受关注。传统的吸烟检测方法往往依赖人工判断,存在准确性低和实时性差的问题。为了解决这些问题,本项目基于深度学习技术进行了吸烟检测系统的设计与实现,…...

递归算法:二叉树前序、中序、后序遍历解析与递归思想深度剖析

🎬 鸽芷咕:个人主页 🔥 个人专栏: 《linux深造日志》 《高效算法》 ⛺️生活的理想,就是为了理想的生活! 文章目录 一、二叉树的遍历1.1 链式结构二叉树的创建1.1 二叉树结构图 二、 前序遍历代码演示:2.1 前序遍历递…...

WebGL开发数字孪生项目

WebGL(Web Graphics Library)是一种用于在Web浏览器中渲染交互式3D图形的JavaScript API。虽然WebGL本身并不是一个数字孪生开发框架,但它提供了强大的图形渲染功能,可以用于开发与数字孪生相关的项目。以下是一些可以使用WebGL开…...

【51单片机系列】C51中的中断系统扩展实验

本文是关于51单片机中断系统的扩展实验。 文章目录 一、 扩展实验一:使用外部中断0控制蜂鸣器,外部中断1控制直流电机二、扩展实验二:修改定时器初值,设定3秒钟的定时时间让LED模块闪烁三、扩展实验三:使用定时器1和数…...

Poi实现复杂Excel导出,理解POI操作Excel思路!!!

前言 对于简单excel报表导出,有很多简单的工具如easypoi,而且现在网上已经有很多工具类整合easypoi使用起来非常方便。但是简单的弊端往往无法适配一些负责场景,而我们实际生产中面临的都是客户自定以的一个负责报表导出,这是利用…...

关于 jsconfig.json 文件在导入文件路径提示方面

前文:以前我弄不清 jsconfig.json 文件的作用是什么,只觉得 tsconfig.json 文件是用来 ts 编译的配置项,js 又不用编译为什么会需要 jsconfig.json 文件。搬了这么久的砖,也算是有所心得,今日记下以备不时之需。 jsco…...

验证码:防范官网恶意爬虫攻击,保障用户隐私安全

网站需要采取措施防止非法注册和登录,验证码是有效的防护措施之一。攻击者通常会使用自动化工具批量注册网站账号,以进行垃圾邮件发送、刷量等恶意活动。验证码可以有效阻止这些自动化工具,有效防止恶意程序或人员批量注册和登录网站。恶意程…...

python学习笔记--异常捕获

异常场景 numinput("input you number:") n9000 try:resultn/int(num)print({} 除以num 结果为{}.format(n,result)) except ZeroDivisionError as err:print("0不可以作为除数,出现报错{}".format(err)) except ValueError as err:print(&quo…...

ChatGPT如何计算token数?

GPT 不是适用于某一门语言的大型语言模型,它适用于几乎所有流行的自然语言。所以 GPT 的 token 需要 兼容 几乎人类的所有自然语言,那意味着 GPT 有一个非常全的 token 词汇表,它能表达出所有人类的自然语言。如何实现这个目的呢?…...

页面菜单,通过get请求一个url后,跳转另外一个页面,+丢失问题

业务场景描述: 在A系统,菜单点击跳B系统这个操作。 A系统菜单是get请求到B系统的一个缓冲页面,然后这个缓冲页面获取到url中的accessToken后,在这个页面中通过post请求后端接口。 问题描述: 当accessToken中包含了…...

高并发场景下的延时双删

基本介绍 "延时双删"是一种在并发编程中使用的技术,用于处理缓存和数据库之间的数据一致性问题。在高并发的场景下,这种方法特别有用。下面是对延时双删的详细介绍: 基本概念: 缓存与数据库的不一致:在并发…...

log4js-node在nodejs项目中的使用示例

在Node.js项目中使用log4js-node模块可以帮助你记录日志。以下是一个简单的示例,演示了如何在Node.js项目中使用log4js-node模块: 首先,你需要安装log4js-node模块。在终端中执行以下命令: npm install log4js 接下来&#xff…...

Java_集合进阶(Collection和List系列)

一、集合概述和分类 1.1 集合的分类 已经学习过了ArrayList集合,但是除了ArrayList集合,Java还提供了很多种其他的集合,如下图所示: 我想你的第一感觉是这些集合好多呀!但是,我们学习时会对这些集合进行…...

QT GUI代码大全(MainWindow, QFile, QPainter, QGraphicsItem/Scene/View)

文章目录 窗口设置QMainWindow类 按钮和菜单QMenuBar类QMenu类QAction类 文件交互QFileDialog类QFileInfo类QFile类QTextStream 绘图QPixmap类QPainter类QBrush类QPen类QPainterPath类 游戏场景QGraphicsItem类QGraphicsScene类QGraphicsView类 窗口设置 QMainWindow类 QMainW…...

C# Onnx Yolov8 Detect 物体检测 多张图片同时推理

目录 效果 模型信息 项目 代码 下载 C# Onnx Yolov8 Detect 物体检测 多张图片同时推理 效果 模型信息 Model Properties ------------------------- date:2023-12-18T11:47:29.332397 description:Ultralytics YOLOv8n-detect model trained on …...

学习使用js保留两位小数同时去掉小数末尾多余的00

学习使用js保留两位小数同时去掉小数末尾多余的00 前言去除00方法 前言 let number 50000000;let new_number number / 10000;console.log(formatter-new_number, new_number);return new_number.toFixed(2) 万;会发现整数使用toFixed(2),之后会有多余的.00 去…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则&#xf…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析,分为​​已启动​​和​​未启动​​两种场景: 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​:当其他组件(如Activity、Service)通过ContentR…...