08- 数据升维 (PolynomialFeatures) (机器学习)
- 在做数据升维的时候,最常见的手段就是将已知维度进行相乘(或者自乘)来构建新的维度
-
使用 np.concatenate()进行简单的,幂次合并,注意数据合并的方向axis = 1
-
数据可视化时,注意切片,因为数据升维后,多了平方这一维
-
# 4、多项式升维 + 普通线性回归
X = np.concatenate([X,X**2],axis = 1)
- 使用 PolynomialFeatures 进行 特征升维
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures() # 使用PolynomialFeatures进行特征升维
poly.fit(X,y)
X = poly.transform(X)
- 调整字体大小: plt.rcParams[ 'font.size' ] = 18
import matplotlib.pyplot as plt
plt.rcParams['font.size'] = 18
1.1、多项式回归基本概念
对于多项式回归来说主要是为了扩展线性回归算法来适应更广泛的数据集,比如我们数据集有两个维度 ,那么用多元线性回归公式就是:
,当我们使用二阶多项式升维的时候,数据集就从原来的
扩展成了
。因此多元线性回归就得去多计算三个维度所对应的w值:
。
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression# 1、创建数据,并进行可视化
X = np.linspace(-1,11,num = 100)
y = (X - 5)**2 + 3*X -12 + np.random.randn(100)
X = X.reshape(-1,1)
plt.scatter(X,y)# 2、创建预测数据
X_test = np.linspace(-2,12,num = 200).reshape(-1,1)# 3、不进行升维 + 普通线性回归
model_1 = LinearRegression()
model_1.fit(X,y)
y_test_1 = model_1.predict(X_test)
plt.plot(X_test,y_test_1,color = 'red')# 4、多项式升维 + 普通线性回归
X = np.concatenate([X,X**2],axis = 1)
model_2 = LinearRegression()
model_2.fit(X,y)
# 5、测试数据处理,并预测
X_test = np.concatenate([X_test,X_test**2],axis = 1)
y_test_2 = model_2.predict(X_test)# 6、数据可视化,切片操作
plt.plot(X_test[:,0],y_test_2,color = 'green')
1.2 使用PolynomialFeatures进行特征升维
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import PolynomialFeatures,StandardScaler
from sklearn.linear_model import SGDRegressor# 1、创建数据,并进行可视化
X = np.linspace(-1,11,num = 100)
y = (X - 5)**2 + 3*X -12 + np.random.randn(100)
X = X.reshape(-1,1)
plt.scatter(X,y)# 3、使用PolynomialFeatures进行特征升维
poly = PolynomialFeatures() # 特征升维
poly.fit(X,y)
X = poly.transform(X)
s = StandardScaler() # 归一化
X = s.fit_transform(X)# 4、训练模型
model = SGDRegressor(penalty='l2',eta0 = 0.01)
model.fit(X,y)# 2、创建预测数据
X_test = np.linspace(-2,12,num = 200).reshape(-1,1)
X_test = poly.transform(X_test) # 特征升维
X_test_norm = s.transform(X_test) # 归一化
y_test = model.predict(X_test_norm)
plt.plot(X_test[:,1],y_test,color = 'green')
1.3 多项式预测
天猫双十一销量与年份的关系是多项式关系!假定,销量和年份之间关系是三次幂关系:
import numpy as np
from sklearn.linear_model import SGDRegressor
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
plt.figure(figsize=(12,9))# 1、创建数据,年份数据2009 ~ 2019
X = np.arange(2009,2020)
y = np.array([0.5,9.36,52,191,350,571,912,1207,1682,2135,2684])# 2、年份数据,均值移除,防止某一个特征列数据天然的数值太大而影响结果
X = X - X.mean()
X = X.reshape(-1,1)# 3、构建多项式特征,3次幂
poly = PolynomialFeatures(degree=3)
X = poly.fit_transform(X)
s = StandardScaler()
X_norm = s.fit_transform(X)# 4、创建模型
model = SGDRegressor(penalty='l2',eta0 = 0.5,max_iter = 5000)
model.fit(X_norm,y)# 5、数据预测
X_test = np.linspace(-5,6,100).reshape(-1,1)
X_test = poly.transform(X_test)
X_test_norm = s.transform(X_test)
y_test = model.predict(X_test_norm)# 6、数据可视化
plt.plot(X_test[:,1],y_test,color = 'green')
plt.bar(X[:,1],y)
plt.bar(6,y_test[-1],color = 'red')
plt.ylim(0,4096)
plt.text(6,y_test[-1] + 100,round(y_test[-1],1),ha = 'center')
_ = plt.xticks(np.arange(-5,7),np.arange(2009,2021))
相关文章:

08- 数据升维 (PolynomialFeatures) (机器学习)
在做数据升维的时候,最常见的手段就是将已知维度进行相乘(或者自乘)来构建新的维度 使用 np.concatenate()进行简单的,幂次合并,注意数据合并的方向axis 1 数据可视化时,注意切片,因为数据升维…...
2023备战金三银四,Python自动化软件测试面试宝典合集(二)
马上就又到了程序员们躁动不安,蠢蠢欲动的季节~这不,金三银四已然到了家门口,元宵节一过后台就有不少人问我:现在外边大厂面试都问啥想去大厂又怕面试挂面试应该怎么准备测试开发前景如何面试,一个程序员成长之路永恒绕…...
笔试题-2023-紫光展锐-数字芯片设计【纯净题目版】
回到首页:2023 数字IC设计秋招复盘——数十家公司笔试题、面试实录 推荐内容:数字IC设计学习比较实用的资料推荐 题目背景 笔试时间:2022.08.24应聘岗位:数字芯片设计工程师笔试时长:90min笔试平台:nowcoder牛客网题目类型:单选题(18道)、不定项选择题(22道)题目评…...

WordPress网站日主题Ri主题RiProV2主题开启了验证码登录但是验证码配置不对结果退出登录后进不去管理端了
背景 WordPress网站日主题Ri主题RiProV2主题开启了验证码登录但是验证码配置不对结果退出登录后进不去管理端了;开启了腾讯云验证码防火墙但APPID,APPSecret没配置,结果在退出登录后,由于验证码验证失败管理端进不去了 提示如下:...

自动驾驶感知——毫米波雷达
文章目录1. 雷达的基本概念1.1 毫米波雷达分类1.2 信息的传输1.3 毫米波雷达的信号频段1.4 毫米波雷达工作原理1.4.1 毫米波雷达测速测距的数学原理1.4.2 毫米波雷达测角度的数学原理1.4.3 硬件接口1.4.4 关键零部件1.4.5 数据的协议与格式1.5 车载毫米波雷达的重要参数1.6 车载…...

取电芯片全协议都可兼容
乐得瑞PD协议芯片/PD取电芯片/PD受电端协议芯片 支持5/9/12/15/20v定制 1、概述 LDR6328S 是乐得瑞科技有限公司开发的一款兼容 USB PD、QC 和 AFC 协议的 Sink 控制器。 LDR6328S 从支持 USB PD、QC 和 AFC 协议的适配器取电,然后供电给设备。比如可以配置适配器输…...

自己总结优化代码写法
jdk1.7新特性详解 开发期间略知jdk1.7的一些特性,没有真正的一个一个得展开研究,而是需要说明再去查,导致最整个新特性不是特别的清楚,这种情况以后得需要改变了,否则就会变成代码的奴隶。现在正好有时间可以细细的研…...

Java体系最强干货分享—挑战40天准备Java面试,最快拿到offer!
如何准备java面试,顺利上岸大厂java岗位? 主攻Java的人越来越多,导致行业越来越卷,最开始敲个“hello world”都能进大厂,现在,八股、全家桶、算法等等面试题横行,卷到极致!就拿今年…...

云计算|OpenStack|错误记录和解决方案(不定时更新)
前言: openstack的部署和使用是难度比较大的,难免会出现各种各样的问题,因此,本文将把一些在部署和使用openstack社区版时出现的错误做一个记录,并就每一个错误分析和解决问题。(尽量记录比较经典的错误&a…...

项目实战-NewFixedThreadPool线程池
目录 什么是线程池 线程池的类型 1.CachedThreadPool 2.FixedThreadPool 3.ScheduledThreadPool 4.SingleThreadPool 5.newWorkStealingPool 线程池的好处 1、线程池的重用 2、控制线程池的并发数 3、线程池可以对线程进行管理 线程池的示例 1.Client启动类 2.具体…...

导数与微分总复习——“高等数学”
各位CSDN的uu们你们好呀,今天,小雅兰来复习一下之前学过的知识点,也就是导数与微分的总复习,依旧是高等数学的内容,主要是明天就要考高等数学了,哈哈哈,下面,让我们一起进入高等数学…...

Linux软件安装
1.Linux安装JDK 1.安装位置 /opt 2.安装包 jdk-8u171-linux-x64.rpm 3.安装步骤 1.将安装包上传到虚拟机中 [rootlocalhost opt]# ls jdk-8u171-linux-x64.rpm2.执行安装命令 [rootlocalhost opt]# rpm -ivh jdk-8u171-linux-x64.rpm 准备中... #####…...

【表面缺陷检测】基于YOLOX的PCB表面缺陷检测(全网最详细的YOLOX保姆级教程)
写在前面: 首先感谢兄弟们的订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 Hello,大家好,我是augustqi。 今天给大家分享一个表面缺陷检测项目:基于YOLOX的PCB表面缺陷检测(保姆级教程)。多的…...
【C#基础】C# 程序基础语法解析
序号系列文章0【C#基础】初识编程语言C#1【C#基础】C# 程序通用结构总结 文章目录前言基础语法1. using 关键字2. namespace 关键字3. class 关键字4. 成员字段5. 成员方法6. Main 方法7. new 关键字8. 标识符9. 关键字结语前言 😄 大家好,我是writer桑&…...

【webpack】webpack 中的插件安装与使用
一、webpack 插件的作用 通过安装和配置第三方的插件,可以拓展 webpack 的能力,从而让 webpack 用起来更方便。最常用的 的webpack 插件有如下两个: 1.webpack-dev-server(实时打包构建) 类似于 node.js 阶段用到的 no…...

生物素-磺基-活性酯,Sulfo-NHS Biotin科研用试剂简介;CAS:119616-38-5
生物素-磺基-活性酯,Sulfo-NHS Biotin 结构式: 编辑 添加图片注释,不超过 140 字(可选) 英文名称:Sulfo-NHS-Biotin Sulfosuccinimidyl biotin 中文名称:磺酸基-Biotin-N-琥珀酰亚胺基酯 CAS&…...

Debain安装命令
目录 一、安装sudo命令 二、安装jdk8 三、更换软件源 四、Debian 安装 yum 五、安装zip、unzip、curl、lrzsz、NUMA 六、安装Maven 五、问题 一、安装sudo命令 1)执行sudo命令,提示 -bash: sudo: command not found的解决方法 apt-get install s…...

2023-02-10 - 6 聚合
当用户使用搜索引擎完成搜索后,在展示结果中需要进行进一步的筛选,而筛选的维度需要根据当前的搜索结果进行汇总,这就用到了聚合技术。聚合的需求在很多应用程序中都有所体现,例如在京东App中搜索“咸鸭蛋”,然后单击搜…...

Servlet实现表白墙
目录 一、表白墙简介 二、代码实现 1、约定前后端交互的接口 2、后端代码实现 3、前端代码实现 三、效果演示 一、表白墙简介 在表白墙页面中包含三个文本框,分别表示表白者,表白对象,表白内容,在文本框中输入内容之后&…...
[python入门㊸] - python测试函数
目录 ❤ 测试函数 ❤ 单元测试和测试用例 ❤ 可通过的测试 ❤ 不能通过的测试 ❤ 测试未通过时怎么办 ❤ 添加新测试 ❤ 测试函数 学习测试,得有测试的代码。下面是一个简单的函数: name_function.py def get_formatted_name(first, last):…...

idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...