当前位置: 首页 > news >正文

C#中使用OpenCV的常用函数

    以下是一些C#中使用OpenCV的常用函数例子:

1. 加载图像:

using OpenCvSharp;Mat image = Cv2.ImRead("path_to_your_image.jpg", ImreadModes.Color);

2. 显示图像:

Cv2.NamedWindow("Image Window", WindowFlags.Normal);
Cv2.ImShow("Image Window", image);
Cv2.WaitKey(0);
Cv2.DestroyAllWindows();

3. 图像转换(例如RGB转灰度):

Mat grayImage = new Mat();
Cv2.CvtColor(image, grayImage, ColorConversionCodes.BGR2GRAY);

4. 通道分离:

Mat[] channels = new Mat[3];
Cv2.Split(image, channels);
Mat blueChannel = channels[0]; // BGR order, so the first channel is Blue

5. 位操作(例如求非):

Mat bitwiseNotImage = new Mat();
Cv2.BitwiseNot(image, bitwiseNotImage);

6. 计算图像的直方图:

int[] histSize = { 256 };
float[] ranges = { 0, 256 };
MatND histogram = new MatND();
Cv2.CalcHist(new Mat[] { grayImage }, new int[] { 0 }, null, histogram, new int[] { 1 }, histSize, ranges);

7. 裁剪图像:

Rect roi = new Rect(new Point(100, 100), new Size(200, 200));
Mat croppedImage = new Mat(image, roi);

8. 缩放图像:

Mat resizedImage = new Mat();
Cv2.Resize(image, resizedImage, new Size(800, 600));

9. 保存图像:

Cv2.ImWrite("output_image.jpg", image);

以上就是一些C#中使用OpenCV的常用函数例子,根据具体需求可以选择合适的功能进行图像处理。请注意,这些代码示例假设你已经正确安装并引用了OpenCvSharp库。

相关文章:

C#中使用OpenCV的常用函数

以下是一些C#中使用OpenCV的常用函数例子: 1. 加载图像: using OpenCvSharp;Mat image Cv2.ImRead("path_to_your_image.jpg", ImreadModes.Color); 2. 显示图像: Cv2.NamedWindow("Image Window", WindowFlags.Nor…...

使用Swift Package Manager (SPM)实现xcframework分发

Swift Package Manager (SPM) 是苹果官方提供的用于管理 Swift 项目的依赖关系和构建过程的工具。它是一个集成在 Swift 编程语言中的包管理器,用于解决在开发过程中管理和构建包依赖项的需求。 1、上传xcframework.zip到服务端 压缩xcframeworks成一个zip包&…...

非阻塞 IO(NIO)

文章目录 非阻塞 IO(NIO)模型驱动程序应用程序模块使用 非阻塞 IO(NIO) 上一节中 https://blog.csdn.net/tyustli/article/details/135140523,使用等待队列头实现了阻塞 IO 程序使用时,阻塞 IO 和非阻塞 IO 的区别在于文件打开的时候是否使用了 O_NONB…...

Android应用-flutter使用Positioned将控件定位到底部中间

文章目录 场景描述示例解释 场景描述 要将Positioned定位到屏幕底部中间的位置,你可以使用MediaQuery来获取屏幕的高度,然后设置Positioned的bottom属性和left或right属性,一般我们left和right都会设置一个值让控制置于合适的位置&#xff0…...

Django 简单图书管理系统

一、图书需求 1. 书籍book_index.html中有超链接:查看所有的书籍列表book_list.html页面 2. 书籍book_list.html中显示所有的书名,有超链接:查看本书籍详情book_detail.html(通过书籍ID)页面 3. 书籍book_detail.html中书的作者和出版社&…...

C++内存管理和模板初阶

C/C内存分布 请看代码: int globalVar 1; static int staticGlobalVar 1; void Test() {static int staticVar 1;int localVar 1;int num1[10] { 1, 2, 3, 4 };char char2[] "abcd";const char* pChar3 "abcd";int* ptr1 (int*)mallo…...

QtRO(Qt Remote Objects)分布式对象远程通信

一、什么是QtRO Qt Remote Objects(QRO)是Qt提供的一种用于实现远程对象通信的机制。 QtRO支持两种类型的通信:RPC(远程过程调用)和LPC(本地进程通信)。 RPC(远程过程调用&#xf…...

【K8s】1# 使用kuboard-spray安装K8s集群

文章目录 搭建k8s集群1.推荐配置1.1.服务器配置1.2.软件版本 2.使用Kuboard-Spray安装k8s集群2.1.配置要求2.2.操作系统兼容性2.3.安装 Kuboard-Spray2.4.加载离线资源包2.5.规划并安装集群2.6.安装成功2.7.访问集群 3.涉及的命令3.1.linux 4.问题汇总Q1:启动离线集…...

leetCode算法—12. 整数转罗马数字

12. 整数转罗马数字 难度:中等 ** 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如, 罗马数字 2 写做 II ,即…...

使用OpenCV4实现工业缺陷检测的六种方法

目录 1 机器视觉2 缺陷检测3 工业上常见缺陷检测方法 1 机器视觉 机器视觉是使用各种工业相机,结合传感器跟电气信号实现替代传统人工,完成对象识别、计数、测量、缺陷检测、引导定位与抓取等任务。其中工业品的缺陷检测极大的依赖人工完成,…...

Excel 获取当前行的行数

ROW() 获取当前行 ROW()1 获取当前行然后支持二次开发...

R语言【stringr】——str_detect 检测是否存在字符串的匹配项

Package stringr version 1.5.1 str_detect(string, pattern, negate FALSE) 参数【string】:输入向量。既可以是字符向量,也可以是强制作为一个字符向量。 参数【pattern】:要寻找的模式。默认解释为正则表达式,如 vignette(&…...

【SpringMVC】SpringMVC的请求与响应

文章目录 0. Tomcat环境的配置1. PostMan工具介绍创建WorkSpace建立新的请求 2. 请求映射路径案例结构与代码案例结构案例代码 案例存在问题解决方案方法方法升级版——配置请求路径前缀注解总结 3. Get请求与Post请求案例结构与案例代码案例结构案例代码 Get请求Post请求接收中…...

Spring Boot3通过GraalVM生成exe执行文件

一、安装GraalVM 1、官网:https://www.graalvm.org/downloads/ 2、配置环境变量 2.1、环境变量必须使用JAVA_HOME,否则会出现问题 2.2、在系统变量配置Path,%JAVA_HOME%\bin,注意必须放在顶部第一位 2.3、配置jdk的环境变量,在P…...

【Amazon 实验②】使用缓存策略及源请求策略,用于控制边缘缓存的行为及回源行为

文章目录 1. 了解缓存策略和源请求策略1.1 使用缓存键和缓存策略 实验:使用CloudFront缓存策略和缓存键控制缓存行为 接上一篇文章【Amazon 实验①】使用 Amazon CloudFront加速Web内容分发,我们现在了解和配置如何使用缓存策略及源请求策略,…...

达梦数据对比工具的部署与使用

1、拷贝达梦软件bin目录到Oracle服务器(root用户) 压缩Linux rh6 x86版本的达梦数据库bin目录,例如压缩文件为dmbin.tar.gz,将文件拷贝到Oracle服务器指定目录并解压(如:/home/oracle/dmbin)&a…...

TLC2543(12位A/D转换器)实现将输入的模拟电压显示到数码管上

代码&#xff1a; #include <reg51.h> #define uchar unsigned char #define uint unsigned int// 数码管0-9 unsigned char seg[] {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F}; sbit SDO P1^0; sbit SDI P1^1; sbit CS P1^2; sbit CLK P1^3; s…...

npm的使用技巧

以下是一些NPM&#xff08;Node Package Manager&#xff09;的使用技巧&#xff1a; 1. **获取帮助**&#xff1a; - 使用 npm help 或者 npm <command> --help 可以获取关于特定命令的帮助信息。 2. **命令自动完成**&#xff1a; - 在 Bash、Zsh 等 shell 中&…...

MySQL 5.6的新特性

MySQL 5.6是一个主要的版本发布&#xff0c;它在性能、可伸缩性、可靠性和可用性方面引入了多项重要改进和新特性。它在2013年发布&#xff0c;相比于它的前身MySQL 5.5&#xff0c;MySQL 5.6带来了以下关键升级&#xff1a; 优化的InnoDB存储引擎&#xff1a;MySQL 5.6中的Inn…...

大模型重构云计算:AI原生或将改变格局

摘要&#xff1a;随着AI技术的快速发展&#xff0c;大模型正逐渐改变云计算的格局。本文将深入探讨大模型如何重构云计算&#xff0c;并分析其对云计算的影响。 一、开篇引言 近年来&#xff0c;人工智能技术的飞速发展&#xff0c;特别是大模型的崛起&#xff0c;正在对云计算…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...